mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-13 13:57:19 +01:00
236 lines
5.4 KiB
C++
236 lines
5.4 KiB
C++
//
|
|
// KMeans.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "kmeans.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <climits>
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
|
|
KMeans::KMeans(std::vector<std::vector<double>> inputSet, int k, std::string init_type) :
|
|
inputSet(inputSet), k(k), init_type(init_type) {
|
|
if (init_type == "KMeans++") {
|
|
kmeansppInitialization(k);
|
|
} else {
|
|
centroidInitialization(k);
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<double>> KMeans::modelSetTest(std::vector<std::vector<double>> X) {
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> closestCentroids;
|
|
for (int i = 0; i < inputSet.size(); i++) {
|
|
std::vector<double> closestCentroid = mu[0];
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
bool isCentroidCloser = alg.euclideanDistance(X[i], mu[j]) < alg.euclideanDistance(X[i], closestCentroid);
|
|
if (isCentroidCloser) {
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
closestCentroids.push_back(closestCentroid);
|
|
}
|
|
return closestCentroids;
|
|
}
|
|
|
|
std::vector<double> KMeans::modelTest(std::vector<double> x) {
|
|
LinAlg alg;
|
|
std::vector<double> closestCentroid = mu[0];
|
|
for (int j = 0; j < mu.size(); j++) {
|
|
if (alg.euclideanDistance(x, mu[j]) < alg.euclideanDistance(x, closestCentroid)) {
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
return closestCentroid;
|
|
}
|
|
|
|
void KMeans::train(int epoch_num, bool UI) {
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
Evaluate();
|
|
|
|
while (true) {
|
|
// STEPS OF THE ALGORITHM
|
|
// 1. DETERMINE r_nk
|
|
// 2. DETERMINE J
|
|
// 3. DETERMINE mu_k
|
|
|
|
// STOP IF CONVERGED, ELSE REPEAT
|
|
|
|
cost_prev = Cost();
|
|
|
|
computeMu();
|
|
Evaluate();
|
|
|
|
// UI PORTION
|
|
if (UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost());
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > epoch_num) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
double KMeans::score() {
|
|
return Cost();
|
|
}
|
|
|
|
std::vector<double> KMeans::silhouette_scores() {
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> closestCentroids = modelSetTest(inputSet);
|
|
std::vector<double> silhouette_scores;
|
|
for (int i = 0; i < inputSet.size(); i++) {
|
|
// COMPUTING a[i]
|
|
double a = 0;
|
|
for (int j = 0; j < inputSet.size(); j++) {
|
|
if (i != j && r[i] == r[j]) {
|
|
a += alg.euclideanDistance(inputSet[i], inputSet[j]);
|
|
}
|
|
}
|
|
// NORMALIZE a[i]
|
|
a /= closestCentroids[i].size() - 1;
|
|
|
|
// COMPUTING b[i]
|
|
double b = INT_MAX;
|
|
for (int j = 0; j < mu.size(); j++) {
|
|
if (closestCentroids[i] != mu[j]) {
|
|
double sum = 0;
|
|
for (int k = 0; k < inputSet.size(); k++) {
|
|
sum += alg.euclideanDistance(inputSet[i], inputSet[k]);
|
|
}
|
|
// NORMALIZE b[i]
|
|
double k_clusterSize = 0;
|
|
for (int k = 0; k < closestCentroids.size(); k++) {
|
|
if (closestCentroids[k] == mu[j]) {
|
|
k_clusterSize++;
|
|
}
|
|
}
|
|
if (sum / k_clusterSize < b) {
|
|
b = sum / k_clusterSize;
|
|
}
|
|
}
|
|
}
|
|
silhouette_scores.push_back((b - a) / fmax(a, b));
|
|
// Or the expanded version:
|
|
// if(a < b) {
|
|
// silhouette_scores.push_back(1 - a/b);
|
|
// }
|
|
// else if(a == b){
|
|
// silhouette_scores.push_back(0);
|
|
// }
|
|
// else{
|
|
// silhouette_scores.push_back(b/a - 1);
|
|
// }
|
|
}
|
|
return silhouette_scores;
|
|
}
|
|
|
|
// This simply computes r_nk
|
|
void KMeans::Evaluate() {
|
|
LinAlg alg;
|
|
r.resize(inputSet.size());
|
|
|
|
for (int i = 0; i < r.size(); i++) {
|
|
r[i].resize(k);
|
|
}
|
|
|
|
for (int i = 0; i < r.size(); i++) {
|
|
std::vector<double> closestCentroid = mu[0];
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
bool isCentroidCloser = alg.euclideanDistance(inputSet[i], mu[j]) < alg.euclideanDistance(inputSet[i], closestCentroid);
|
|
if (isCentroidCloser) {
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
if (mu[j] == closestCentroid) {
|
|
r[i][j] = 1;
|
|
} else {
|
|
r[i][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This simply computes or re-computes mu_k
|
|
void KMeans::computeMu() {
|
|
LinAlg alg;
|
|
for (int i = 0; i < mu.size(); i++) {
|
|
std::vector<double> num;
|
|
num.resize(r.size());
|
|
|
|
for (int i = 0; i < num.size(); i++) {
|
|
num[i] = 0;
|
|
}
|
|
|
|
double den = 0;
|
|
for (int j = 0; j < r.size(); j++) {
|
|
num = alg.addition(num, alg.scalarMultiply(r[j][i], inputSet[j]));
|
|
}
|
|
for (int j = 0; j < r.size(); j++) {
|
|
den += r[j][i];
|
|
}
|
|
mu[i] = alg.scalarMultiply(double(1) / double(den), num);
|
|
}
|
|
}
|
|
|
|
void KMeans::centroidInitialization(int k) {
|
|
mu.resize(k);
|
|
|
|
for (int i = 0; i < k; i++) {
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(inputSet.size() - 1));
|
|
|
|
mu[i].resize(inputSet.size());
|
|
mu[i] = inputSet[distribution(generator)];
|
|
}
|
|
}
|
|
|
|
void KMeans::kmeansppInitialization(int k) {
|
|
LinAlg alg;
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(inputSet.size() - 1));
|
|
mu.push_back(inputSet[distribution(generator)]);
|
|
|
|
for (int i = 0; i < k - 1; i++) {
|
|
std::vector<double> farthestCentroid;
|
|
for (int j = 0; j < inputSet.size(); j++) {
|
|
double max_dist = 0;
|
|
/* SUM ALL THE SQUARED DISTANCES, CHOOSE THE ONE THAT'S FARTHEST
|
|
AS TO SPREAD OUT THE CLUSTER CENTROIDS. */
|
|
double sum = 0;
|
|
for (int k = 0; k < mu.size(); k++) {
|
|
sum += alg.euclideanDistance(inputSet[j], mu[k]);
|
|
}
|
|
if (sum * sum > max_dist) {
|
|
farthestCentroid = inputSet[j];
|
|
max_dist = sum * sum;
|
|
}
|
|
}
|
|
mu.push_back(farthestCentroid);
|
|
}
|
|
}
|
|
|
|
double KMeans::Cost() {
|
|
LinAlg alg;
|
|
double sum = 0;
|
|
for (int i = 0; i < r.size(); i++) {
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
sum += r[i][j] * alg.norm_sq(alg.subtraction(inputSet[i], mu[j]));
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|