pmlpp/mlpp/probit_reg/probit_reg.cpp
2023-04-29 15:07:30 +02:00

433 lines
12 KiB
C++

//
// ProbitReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "probit_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <random>
Ref<MLPPMatrix> MLPPProbitReg::get_input_set() {
return _input_set;
}
void MLPPProbitReg::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
_initialized = false;
}
Ref<MLPPVector> MLPPProbitReg::get_output_set() {
return _output_set;
}
void MLPPProbitReg::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
_initialized = false;
}
MLPPReg::RegularizationType MLPPProbitReg::get_reg() {
return _reg;
}
void MLPPProbitReg::set_reg(const MLPPReg::RegularizationType val) {
_reg = val;
_initialized = false;
}
real_t MLPPProbitReg::get_lambda() {
return _lambda;
}
void MLPPProbitReg::set_lambda(const real_t val) {
_lambda = val;
_initialized = false;
}
real_t MLPPProbitReg::get_alpha() {
return _alpha;
}
void MLPPProbitReg::set_alpha(const real_t val) {
_alpha = val;
_initialized = false;
}
Ref<MLPPVector> MLPPProbitReg::model_set_test(const Ref<MLPPMatrix> &X) {
return evaluatem(X);
}
real_t MLPPProbitReg::model_test(const Ref<MLPPVector> &x) {
return evaluatev(x);
}
void MLPPProbitReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
// Calculating the weight gradients
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(_input_set), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))) / _n;
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPProbitReg::mle(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
Ref<MLPPVector> error = alg.subtractionnv(_output_set, _y_hat);
// Calculating the weight gradients
_weights = alg.additionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(_input_set), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias += learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))) / _n;
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPProbitReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
// NOTE: ∂y_hat/∂z is sparse
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> output_set_tmp;
output_set_tmp.instance();
output_set_tmp->resize(1);
Ref<MLPPVector> y_hat_tmp;
y_hat_tmp.instance();
y_hat_tmp->resize(1);
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
while (true) {
int output_index = distribution(generator);
_input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp);
real_t output_set_entry = _output_set->element_get(output_index);
real_t y_hat = evaluatev(input_set_row_tmp);
real_t z = propagatev(input_set_row_tmp);
y_hat_tmp->element_set(0, y_hat);
output_set_tmp->element_set(0, output_set_entry);
cost_prev = cost(y_hat_tmp, output_set_tmp);
real_t error = y_hat - output_set_entry;
// Weight Updation
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error * ((1 / Math::sqrt(2 * Math_PI)) * Math::exp(-z * z / 2)), input_set_row_tmp));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Bias updation
_bias -= learning_rate * error * ((1 / Math::sqrt(2 * Math_PI)) * Math::exp(-z * z / 2));
y_hat = evaluatev(input_set_row_tmp);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_tmp, output_set_tmp));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPProbitReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
Ref<MLPPVector> z_tmp;
z_tmp.instance();
z_tmp->resize(1);
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input = batches.input_sets[i];
Ref<MLPPVector> current_output = batches.output_sets[i];
Ref<MLPPVector> y_hat = evaluatem(current_input);
real_t z = propagatev(current_output);
z_tmp->element_set(0, z);
cost_prev = cost(y_hat, current_output);
Ref<MLPPVector> error = alg.subtractionnv(y_hat, current_output);
// Calculating the weight gradients
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / batches.input_sets.size(), alg.mat_vec_multnv(alg.transposenm(current_input), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(z_tmp)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(z_tmp))) / batches.input_sets.size();
y_hat = evaluatev(current_input);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
real_t MLPPProbitReg::score() {
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
}
void MLPPProbitReg::save(const String &file_name) {
MLPPUtilities util;
//util.saveParameters(file_name, _weights, _bias);
}
bool MLPPProbitReg::is_initialized() {
return _initialized;
}
void MLPPProbitReg::initialize() {
if (_initialized) {
return;
}
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
_n = _input_set->size().y;
_k = _input_set->size().x;
if (!_y_hat.is_valid()) {
_y_hat.instance();
}
_y_hat->resize(_n);
MLPPUtilities util;
if (!_weights.is_valid()) {
_weights.instance();
}
_weights->resize(_k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
_initialized = true;
}
MLPPProbitReg::MLPPProbitReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_y_hat.instance();
_y_hat->resize(_n);
MLPPUtilities util;
_weights.instance();
_weights->resize(_k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
_initialized = true;
}
MLPPProbitReg::MLPPProbitReg() {
_y_hat.instance();
_bias = 0;
_n = 0;
_k = 0;
// Regularization Params
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
_lambda = 0.5;
_alpha = 0.5;
_initialized = false;
}
MLPPProbitReg::~MLPPProbitReg() {
}
real_t MLPPProbitReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
}
Ref<MLPPVector> MLPPProbitReg::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.gaussian_cdf_normv(alg.scalar_addnv(_bias, alg.mat_vec_multnv(X, _weights)));
}
Ref<MLPPVector> MLPPProbitReg::propagatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
return alg.scalar_addnv(_bias, alg.mat_vec_multnv(X, _weights));
}
real_t MLPPProbitReg::evaluatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.gaussian_cdf_normr(alg.dotnv(_weights, x) + _bias);
}
real_t MLPPProbitReg::propagatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
return alg.dotnv(_weights, x) + _bias;
}
// gaussianCDF ( wTx + b )
void MLPPProbitReg::forward_pass() {
MLPPActivation avn;
_z = propagatem(_input_set);
_y_hat = avn.gaussian_cdf_normv(_z);
}
void MLPPProbitReg::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPProbitReg::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPProbitReg::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPProbitReg::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPProbitReg::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPProbitReg::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPProbitReg::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPProbitReg::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPProbitReg::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPProbitReg::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPProbitReg::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPProbitReg::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPProbitReg::model_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::gradient_descent, 0, false);
ClassDB::bind_method(D_METHOD("mle", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::mle, 0, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::sgd, 0, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPProbitReg::mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPProbitReg::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPProbitReg::save);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPProbitReg::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPProbitReg::initialize);
}