mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-09 17:39:37 +01:00
197 lines
8.4 KiB
C++
197 lines
8.4 KiB
C++
//
|
|
// MANN.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "MANN.hpp"
|
|
#include "Activation/Activation.hpp"
|
|
#include "LinAlg/LinAlg.hpp"
|
|
#include "Regularization/Reg.hpp"
|
|
#include "Utilities/Utilities.hpp"
|
|
#include "Cost/Cost.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
namespace MLPP {
|
|
MANN::MANN(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet)
|
|
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_output(outputSet[0].size())
|
|
{
|
|
|
|
}
|
|
|
|
MANN::~MANN(){
|
|
delete outputLayer;
|
|
}
|
|
|
|
std::vector<std::vector<double>> MANN::modelSetTest(std::vector<std::vector<double>> X){
|
|
if(!network.empty()){
|
|
network[0].input = X;
|
|
network[0].forwardPass();
|
|
|
|
for(int i = 1; i < network.size(); i++){
|
|
network[i].input = network[i - 1].a;
|
|
network[i].forwardPass();
|
|
}
|
|
outputLayer->input = network[network.size() - 1].a;
|
|
}
|
|
else {
|
|
outputLayer->input = X;
|
|
}
|
|
outputLayer->forwardPass();
|
|
return outputLayer->a;
|
|
}
|
|
|
|
std::vector<double> MANN::modelTest(std::vector<double> x){
|
|
if(!network.empty()){
|
|
network[0].Test(x);
|
|
for(int i = 1; i < network.size(); i++){
|
|
network[i].Test(network[i - 1].a_test);
|
|
}
|
|
outputLayer->Test(network[network.size() - 1].a_test);
|
|
}
|
|
else{
|
|
outputLayer->Test(x);
|
|
}
|
|
return outputLayer->a_test;
|
|
}
|
|
|
|
void MANN::gradientDescent(double learning_rate, int max_epoch, bool UI){
|
|
class Cost cost;
|
|
Activation avn;
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while(true){
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
if(outputLayer->activation == "Softmax"){
|
|
outputLayer->delta = alg.subtraction(y_hat, outputSet);
|
|
}
|
|
else{
|
|
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
|
|
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
|
|
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
|
|
}
|
|
|
|
std::vector<std::vector<double>> outputWGrad = alg.matmult(alg.transpose(outputLayer->input), outputLayer->delta);
|
|
|
|
outputLayer->weights = alg.subtraction(outputLayer->weights, alg.scalarMultiply(learning_rate/n, outputWGrad));
|
|
outputLayer->weights = regularization.regWeights(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
|
|
outputLayer->bias = alg.subtractMatrixRows(outputLayer->bias, alg.scalarMultiply(learning_rate/n, outputLayer->delta));
|
|
|
|
if(!network.empty()){
|
|
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
|
|
network[network.size() - 1].delta = alg.hadamard_product(alg.matmult(outputLayer->delta, alg.transpose(outputLayer->weights)), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
|
|
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
|
|
|
|
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, alg.scalarMultiply(learning_rate/n, hiddenLayerWGrad));
|
|
network[network.size() - 1].weights = regularization.regWeights(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg);
|
|
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate/n, network[network.size() - 1].delta));
|
|
|
|
for(int i = network.size() - 2; i >= 0; i--){
|
|
auto hiddenLayerAvn = network[i].activation_map[network[i].activation];
|
|
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, network[i + 1].weights), (avn.*hiddenLayerAvn)(network[i].z, 1));
|
|
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
|
|
network[i].weights = alg.subtraction(network[i].weights, alg.scalarMultiply(learning_rate/n, hiddenLayerWGrad));
|
|
network[i].weights = regularization.regWeights(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
|
|
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate/n, network[i].delta));
|
|
}
|
|
}
|
|
|
|
forwardPass();
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
|
|
Utilities::UI(outputLayer->weights, outputLayer->bias);
|
|
if(!network.empty()){
|
|
std::cout << "Layer " << network.size() << ": " << std::endl;
|
|
for(int i = network.size() - 1; i >= 0; i--){
|
|
std::cout << "Layer " << i + 1 << ": " << std::endl;
|
|
Utilities::UI(network[i].weights, network[i].bias);
|
|
}
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
}
|
|
|
|
double MANN::score(){
|
|
Utilities util;
|
|
forwardPass();
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void MANN::save(std::string fileName){
|
|
Utilities util;
|
|
if(!network.empty()){
|
|
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
|
|
for(int i = 1; i < network.size(); i++){
|
|
util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1);
|
|
}
|
|
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1);
|
|
}
|
|
else{
|
|
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1);
|
|
}
|
|
}
|
|
|
|
void MANN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha){
|
|
if(network.empty()){
|
|
network.push_back(HiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha));
|
|
network[0].forwardPass();
|
|
}
|
|
else{
|
|
network.push_back(HiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
|
|
network[network.size() - 1].forwardPass();
|
|
}
|
|
}
|
|
|
|
void MANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha){
|
|
if(!network.empty()){
|
|
outputLayer = new MultiOutputLayer(n_output, network[0].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
|
|
}
|
|
else{
|
|
outputLayer = new MultiOutputLayer(n_output, k, activation, loss, inputSet, weightInit, reg, lambda, alpha);
|
|
}
|
|
}
|
|
|
|
double MANN::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y){
|
|
Reg regularization;
|
|
class Cost cost;
|
|
double totalRegTerm = 0;
|
|
|
|
auto cost_function = outputLayer->cost_map[outputLayer->cost];
|
|
if(!network.empty()){
|
|
for(int i = 0; i < network.size() - 1; i++){
|
|
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
|
|
}
|
|
}
|
|
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
|
|
}
|
|
|
|
void MANN::forwardPass(){
|
|
if(!network.empty()){
|
|
network[0].input = inputSet;
|
|
network[0].forwardPass();
|
|
|
|
for(int i = 1; i < network.size(); i++){
|
|
network[i].input = network[i - 1].a;
|
|
network[i].forwardPass();
|
|
}
|
|
outputLayer->input = network[network.size() - 1].a;
|
|
}
|
|
else{
|
|
outputLayer->input = inputSet;
|
|
}
|
|
outputLayer->forwardPass();
|
|
y_hat = outputLayer->a;
|
|
}
|
|
} |