mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
100 lines
5.1 KiB
C++
100 lines
5.1 KiB
C++
//
|
|
// Data.hpp
|
|
// MLP
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#ifndef Data_hpp
|
|
#define Data_hpp
|
|
|
|
#include <vector>
|
|
#include <tuple>
|
|
#include <string>
|
|
|
|
|
|
namespace MLPP{
|
|
class Data{
|
|
public:
|
|
// Load Datasets
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<double>> loadBreastCancer();
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<double>> loadBreastCancerSVC();
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> loadIris();
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> loadWine();
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> loadMnistTrain();
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> loadMnistTest();
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<double>> loadCaliforniaHousing();
|
|
std::tuple<std::vector<double>, std::vector<double>> loadFiresAndCrime();
|
|
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>, std::vector<std::vector<double>>, std::vector<std::vector<double>>> trainTestSplit(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet, double testSize);
|
|
|
|
// Supervised
|
|
void setData(int k, std::string fileName, std::vector<std::vector<double>>& inputSet, std::vector<double>& outputSet);
|
|
void printData(std::vector <std::string> inputName, std::string outputName, std::vector<std::vector<double>> inputSet, std::vector<double> outputSet);
|
|
|
|
// Unsupervised
|
|
void setData(int k, std::string fileName, std::vector<std::vector<double>>& inputSet);
|
|
void printData(std::vector <std::string> inputName, std::vector<std::vector<double>> inputSet);
|
|
|
|
// Simple
|
|
void setData(std::string fileName, std::vector <double>& inputSet, std::vector <double>& outputSet);
|
|
void printData(std::string& inputName, std::string& outputName, std::vector <double>& inputSet, std::vector <double>& outputSet);
|
|
|
|
// Images
|
|
std::vector<std::vector<double>> rgb2gray(std::vector<std::vector<std::vector<double>>> input);
|
|
std::vector<std::vector<std::vector<double>>> rgb2ycbcr(std::vector<std::vector<std::vector<double>>> input);
|
|
std::vector<std::vector<std::vector<double>>> rgb2hsv(std::vector<std::vector<std::vector<double>>> input);
|
|
std::vector<std::vector<std::vector<double>>> rgb2xyz(std::vector<std::vector<std::vector<double>>> input);
|
|
std::vector<std::vector<std::vector<double>>> xyz2rgb(std::vector<std::vector<std::vector<double>>> input);
|
|
|
|
// Text-Based & NLP
|
|
std::string toLower(std::string text);
|
|
std::vector<char> split(std::string text);
|
|
std::vector<std::string> splitSentences(std::string data);
|
|
std::vector<std::string> removeSpaces(std::vector<std::string> data);
|
|
std::vector<std::string> removeNullByte(std::vector<std::string> data);
|
|
std::vector<std::string> segment(std::string text);
|
|
std::vector<double> tokenize(std::string text);
|
|
std::vector<std::string> removeStopWords(std::string text);
|
|
std::vector<std::string> removeStopWords(std::vector<std::string> segmented_data);
|
|
|
|
std::string stemming(std::string text);
|
|
|
|
std::vector<std::vector<double>> BOW(std::vector<std::string> sentences, std::string = "Default");
|
|
std::vector<std::vector<double>> TFIDF(std::vector<std::string> sentences);
|
|
std::tuple<std::vector<std::vector<double>>, std::vector<std::string>> word2Vec(std::vector<std::string> sentences, std::string type, int windowSize, int dimension, double learning_rate, int max_epoch);
|
|
std::vector<std::vector<double>> LSA(std::vector<std::string> sentences, int dim);
|
|
|
|
std::vector<std::string> createWordList(std::vector<std::string> sentences);
|
|
|
|
// Extra
|
|
void setInputNames(std::string fileName, std::vector<std::string>& inputNames);
|
|
std::vector<std::vector<double>> featureScaling(std::vector<std::vector<double>> X);
|
|
std::vector<std::vector<double>> meanNormalization(std::vector<std::vector<double>> X);
|
|
std::vector<std::vector<double>> meanCentering(std::vector<std::vector<double>> X);
|
|
std::vector<std::vector<double>> oneHotRep (std::vector<double> tempOutputSet, int n_class);
|
|
std::vector<double> reverseOneHot(std::vector<std::vector<double>> tempOutputSet);
|
|
|
|
template <class T>
|
|
std::vector<T> vecToSet(std::vector<T> inputSet){
|
|
std::vector<T> setInputSet;
|
|
for(int i = 0; i < inputSet.size(); i++){
|
|
bool new_element = true;
|
|
for(int j = 0; j < setInputSet.size(); j++){
|
|
if(setInputSet[j] == inputSet[i]){
|
|
new_element = false;
|
|
}
|
|
}
|
|
if(new_element){
|
|
setInputSet.push_back(inputSet[i]);
|
|
}
|
|
}
|
|
return setInputSet;
|
|
}
|
|
|
|
private:
|
|
};
|
|
}
|
|
|
|
#endif /* Data_hpp */
|