pmlpp/softmax_reg/softmax_reg.h

111 lines
4.3 KiB
C++

#ifndef MLPP_SOFTMAX_REG_H
#define MLPP_SOFTMAX_REG_H
/*************************************************************************/
/* softmax_reg.h */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2023-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "core/math/math_defs.h"
#include "core/object/resource.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPSoftmaxReg : public Resource {
GDCLASS(MLPPSoftmaxReg, Resource);
public:
Ref<MLPPMatrix> get_input_set() const;
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set() const;
void set_output_set(const Ref<MLPPMatrix> &val);
MLPPReg::RegularizationType get_reg() const;
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda() const;
void set_lambda(const real_t val);
real_t get_alpha() const;
void set_alpha(const real_t val);
Ref<MLPPMatrix> data_y_hat_get() const;
void data_y_hat_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_weights_get() const;
void data_weights_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> data_bias_get() const;
void data_bias_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void train_sgd(real_t learning_rate, int max_epoch, bool ui = false);
void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
bool needs_init() const;
void initialize();
MLPPSoftmaxReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPSoftmaxReg();
~MLPPSoftmaxReg();
protected:
real_t cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
Ref<MLPPVector> evaluatev(const Ref<MLPPVector> &x);
Ref<MLPPMatrix> evaluatem(const Ref<MLPPMatrix> &X);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPMatrix> _output_set;
// Regularization Params
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
Ref<MLPPMatrix> _y_hat;
Ref<MLPPMatrix> _weights;
Ref<MLPPVector> _bias;
};
#endif /* SoftmaxReg_hpp */