mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-08 13:12:09 +01:00
240 lines
7.5 KiB
C++
240 lines
7.5 KiB
C++
/*************************************************************************/
|
|
/* gaussian_nb.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "gaussian_nb.h"
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "../stat/stat.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
/*
|
|
Ref<MLPPMatrix> MLPPGaussianNB::get_input_set() {
|
|
return _input_set;
|
|
}
|
|
void MLPPGaussianNB::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
_input_set = val;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPGaussianNB::get_output_set() {
|
|
return _output_set;
|
|
}
|
|
void MLPPGaussianNB::set_output_set(const Ref<MLPPVector> &val) {
|
|
_output_set = val;
|
|
}
|
|
|
|
int MLPPGaussianNB::get_class_num() {
|
|
return _class_num;
|
|
}
|
|
void MLPPGaussianNB::set_class_num(const int val) {
|
|
_class_num = val;
|
|
}
|
|
*/
|
|
|
|
Ref<MLPPVector> MLPPGaussianNB::model_set_test(const Ref<MLPPMatrix> &X) {
|
|
Ref<MLPPVector> y_hat;
|
|
y_hat.instance();
|
|
y_hat->resize(X->size().y);
|
|
|
|
Ref<MLPPVector> x_row_tmp;
|
|
x_row_tmp.instance();
|
|
x_row_tmp->resize(X->size().x);
|
|
|
|
for (int i = 0; i < X->size().y; i++) {
|
|
X->row_get_into_mlpp_vector(i, x_row_tmp);
|
|
|
|
y_hat->element_set(i, model_test(x_row_tmp));
|
|
}
|
|
|
|
return y_hat;
|
|
}
|
|
|
|
real_t MLPPGaussianNB::model_test(const Ref<MLPPVector> &x) {
|
|
LocalVector<real_t> score;
|
|
score.resize(_class_num);
|
|
|
|
real_t y_hat_i = 1;
|
|
|
|
for (int i = _class_num - 1; i >= 0; i--) {
|
|
real_t sigma_i = _sigma->element_get(i);
|
|
real_t x_i = x->element_get(i);
|
|
real_t mu_i = _mu->element_get(i);
|
|
|
|
y_hat_i += Math::log(_priors->element_get(i) * (1 / Math::sqrt(2 * Math_PI * sigma_i * sigma_i)) * Math::exp(-(x_i * mu_i) * (x_i * mu_i) / (2 * sigma_i * sigma_i)));
|
|
score[i] = Math::exp(y_hat_i);
|
|
}
|
|
|
|
real_t max_element = -Math_INF;
|
|
int max_element_index = 0;
|
|
|
|
for (int i = 0; i < _class_num; ++i) {
|
|
real_t score_i = score[i];
|
|
|
|
if (score_i > max_element) {
|
|
max_element = score_i;
|
|
max_element_index = i;
|
|
}
|
|
}
|
|
|
|
return max_element_index;
|
|
}
|
|
|
|
real_t MLPPGaussianNB::score() {
|
|
MLPPUtilities util;
|
|
return util.performance_vec(_y_hat, _output_set);
|
|
}
|
|
|
|
bool MLPPGaussianNB::is_initialized() {
|
|
return _initialized;
|
|
}
|
|
void MLPPGaussianNB::initialize() {
|
|
if (_initialized) {
|
|
return;
|
|
}
|
|
|
|
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPGaussianNB::MLPPGaussianNB(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_class_num) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_class_num = p_class_num;
|
|
|
|
_mu.instance();
|
|
_sigma.instance();
|
|
_priors.instance();
|
|
|
|
_y_hat.instance();
|
|
_y_hat->resize(_output_set->size());
|
|
|
|
evaluate();
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPGaussianNB::MLPPGaussianNB() {
|
|
_initialized = false;
|
|
}
|
|
MLPPGaussianNB::~MLPPGaussianNB() {
|
|
}
|
|
|
|
void MLPPGaussianNB::evaluate() {
|
|
MLPPStat stat;
|
|
|
|
// Computing mu_k_y and sigma_k_y
|
|
_mu->resize(_class_num);
|
|
_sigma->resize(_class_num);
|
|
|
|
Ref<MLPPVector> set_vec;
|
|
set_vec.instance();
|
|
|
|
for (int i = _class_num - 1; i >= 0; i--) {
|
|
PoolRealArray set;
|
|
|
|
for (int j = 0; j < _input_set->size().y; j++) {
|
|
for (int k = 0; k < _input_set->size().x; k++) {
|
|
if (_output_set->element_get(j) == i) {
|
|
set.push_back(_input_set->element_get(j, k));
|
|
}
|
|
}
|
|
}
|
|
|
|
set_vec->set_from_pool_vector(set);
|
|
|
|
_mu->element_set(i, stat.meanv(set_vec));
|
|
_sigma->element_set(i, stat.standard_deviationv(set_vec));
|
|
}
|
|
|
|
// Priors
|
|
_priors->resize(_class_num);
|
|
_priors->fill(0);
|
|
for (int i = 0; i < _output_set->size(); i++) {
|
|
int indx = static_cast<int>(_output_set->element_get(i));
|
|
_priors->element_set(indx, _priors->element_get(indx));
|
|
}
|
|
|
|
_priors->scalar_multiply(real_t(1) / real_t(_output_set->size()));
|
|
|
|
for (int i = 0; i < _output_set->size(); i++) {
|
|
LocalVector<real_t> score;
|
|
score.resize(_class_num);
|
|
|
|
real_t y_hat_i = 1;
|
|
|
|
for (int j = _class_num - 1; j >= 0; j--) {
|
|
for (int k = 0; k < _input_set->size().x; k++) {
|
|
real_t sigma_j = _sigma->element_get(j);
|
|
real_t mu_j = _mu->element_get(j);
|
|
real_t input_set_i_k = _input_set->element_get(i, k);
|
|
|
|
y_hat_i += Math::log(_priors->element_get(j) * (1 / Math::sqrt(2 * Math_PI * sigma_j * sigma_j)) * Math::exp(-(input_set_i_k * mu_j) * (input_set_i_k * mu_j) / (2 * sigma_j * sigma_j)));
|
|
}
|
|
|
|
score[j] = Math::exp(y_hat_i);
|
|
}
|
|
|
|
real_t max_element = -Math_INF;
|
|
int max_element_index = 0;
|
|
|
|
for (int ii = 0; ii < _class_num; ++ii) {
|
|
real_t score_ii = score[ii];
|
|
|
|
if (score_ii > max_element) {
|
|
max_element = score_ii;
|
|
max_element_index = ii;
|
|
}
|
|
}
|
|
|
|
_y_hat->element_set(i, max_element_index);
|
|
}
|
|
}
|
|
|
|
void MLPPGaussianNB::_bind_methods() {
|
|
/*
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGaussianNB::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGaussianNB::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGaussianNB::get_output_set);
|
|
ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGaussianNB::set_output_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_k"), &MLPPGaussianNB::get_k);
|
|
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGaussianNB::set_k);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
|
|
|
|
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGaussianNB::model_set_test);
|
|
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGaussianNB::model_test);
|
|
ClassDB::bind_method(D_METHOD("score"), &MLPPGaussianNB::score);
|
|
*/
|
|
}
|