pmlpp/mlpp/c_log_log_reg/c_log_log_reg.h

68 lines
1.7 KiB
C++

#ifndef MLPP_C_LOG_LOG_REG_H
#define MLPP_C_LOG_LOG_REG_H
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "../regularization/reg.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
class MLPPCLogLogReg : public Reference {
GDCLASS(MLPPCLogLogReg, Reference);
public:
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void mle(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
MLPPCLogLogReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPCLogLogReg();
~MLPPCLogLogReg();
protected:
void weight_initialization(int k);
void bias_initialization();
real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
real_t evaluatev(const Ref<MLPPVector> &x);
real_t propagatev(const Ref<MLPPVector> &x);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
Ref<MLPPVector> propagatem(const Ref<MLPPMatrix> &X);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _z;
Ref<MLPPVector> _weights;
real_t bias;
int _n;
int _k;
// Regularization Params
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* CLogLogReg_hpp */