mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
79 lines
3.7 KiB
C++
79 lines
3.7 KiB
C++
#ifndef MLPP_REG_H
|
|
#define MLPP_REG_H
|
|
|
|
/*************************************************************************/
|
|
/* reg.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2022-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "core/object/reference.h"
|
|
|
|
#include "../lin_alg/mlpp_matrix.h"
|
|
#include "../lin_alg/mlpp_vector.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
class MLPPReg : public Reference {
|
|
GDCLASS(MLPPReg, Reference);
|
|
|
|
public:
|
|
enum RegularizationType {
|
|
REGULARIZATION_TYPE_NONE = 0,
|
|
REGULARIZATION_TYPE_RIDGE,
|
|
REGULARIZATION_TYPE_LASSO,
|
|
REGULARIZATION_TYPE_ELASTIC_NET,
|
|
REGULARIZATION_TYPE_WEIGHT_CLIPPING,
|
|
};
|
|
|
|
real_t reg_termv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, RegularizationType reg);
|
|
real_t reg_termm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, RegularizationType reg);
|
|
|
|
Ref<MLPPVector> reg_weightsv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, RegularizationType reg);
|
|
Ref<MLPPMatrix> reg_weightsm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, RegularizationType reg);
|
|
|
|
Ref<MLPPVector> reg_deriv_termv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, RegularizationType reg);
|
|
Ref<MLPPMatrix> reg_deriv_termm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, RegularizationType reg);
|
|
|
|
MLPPReg();
|
|
~MLPPReg();
|
|
|
|
protected:
|
|
static void _bind_methods();
|
|
|
|
private:
|
|
real_t reg_deriv_termvr(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, RegularizationType reg, int j);
|
|
real_t reg_deriv_termmr(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, RegularizationType reg, int i, int j);
|
|
};
|
|
|
|
VARIANT_ENUM_CAST(MLPPReg::RegularizationType);
|
|
|
|
#endif /* Reg_hpp */
|