pmlpp/mlpp/probit_reg/probit_reg.cpp
2023-12-30 00:41:59 +01:00

488 lines
15 KiB
C++

/*************************************************************************/
/* probit_reg.cpp */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2022-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "probit_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <random>
Ref<MLPPMatrix> MLPPProbitReg::get_input_set() {
return _input_set;
}
void MLPPProbitReg::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
}
Ref<MLPPVector> MLPPProbitReg::get_output_set() {
return _output_set;
}
void MLPPProbitReg::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
}
MLPPReg::RegularizationType MLPPProbitReg::get_reg() {
return _reg;
}
void MLPPProbitReg::set_reg(const MLPPReg::RegularizationType val) {
_reg = val;
}
real_t MLPPProbitReg::get_lambda() {
return _lambda;
}
void MLPPProbitReg::set_lambda(const real_t val) {
_lambda = val;
}
real_t MLPPProbitReg::get_alpha() {
return _alpha;
}
void MLPPProbitReg::set_alpha(const real_t val) {
_alpha = val;
}
Ref<MLPPVector> MLPPProbitReg::data_z_get() const {
return _z;
}
void MLPPProbitReg::data_z_set(const Ref<MLPPVector> &val) {
if (!val.is_valid()) {
return;
}
_z = val;
}
Ref<MLPPVector> MLPPProbitReg::data_y_hat_get() const {
return _y_hat;
}
void MLPPProbitReg::data_y_hat_set(const Ref<MLPPVector> &val) {
if (!val.is_valid()) {
return;
}
_y_hat = val;
}
Ref<MLPPVector> MLPPProbitReg::data_weights_get() const {
return _weights;
}
void MLPPProbitReg::data_weights_set(const Ref<MLPPVector> &val) {
if (!val.is_valid()) {
return;
}
_weights = val;
}
real_t MLPPProbitReg::data_bias_get() const {
return _bias;
}
void MLPPProbitReg::data_bias_set(const real_t val) {
_bias = val;
}
Ref<MLPPVector> MLPPProbitReg::model_set_test(const Ref<MLPPMatrix> &X) {
ERR_FAIL_COND_V(needs_init(), Ref<MLPPVector>());
return evaluatem(X);
}
real_t MLPPProbitReg::model_test(const Ref<MLPPVector> &x) {
ERR_FAIL_COND_V(needs_init(), 0);
return evaluatev(x);
}
void MLPPProbitReg::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
Ref<MLPPVector> error = _y_hat->subn(_output_set);
// Calculating the weight gradients
_weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.gaussian_cdf_derivv(_z)))->scalar_multiplyn(learning_rate / n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias -= learning_rate * error->hadamard_productn(avn.gaussian_cdf_derivv(_z))->sum_elements() / n;
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPProbitReg::train_mle(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
Ref<MLPPVector> error = _output_set->subn(_y_hat);
// Calculating the weight gradients
_weights->add(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.gaussian_cdf_derivv(_z)))->scalar_multiplyn(learning_rate / n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias += learning_rate * error->hadamard_productn(avn.gaussian_cdf_derivv(_z))->sum_elements() / n;
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPProbitReg::train_sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(needs_init());
// NOTE: ∂y_hat/∂z is sparse
MLPPActivation avn;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> output_set_tmp;
output_set_tmp.instance();
output_set_tmp->resize(1);
Ref<MLPPVector> y_hat_tmp;
y_hat_tmp.instance();
y_hat_tmp->resize(1);
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
while (true) {
int output_index = distribution(generator);
_input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp);
real_t output_set_entry = _output_set->element_get(output_index);
real_t y_hat = evaluatev(input_set_row_tmp);
real_t z = propagatev(input_set_row_tmp);
y_hat_tmp->element_set(0, y_hat);
output_set_tmp->element_set(0, output_set_entry);
cost_prev = cost(y_hat_tmp, output_set_tmp);
real_t error = y_hat - output_set_entry;
// Weight Updation
_weights->sub(input_set_row_tmp->scalar_multiplyn(learning_rate * error * ((1 / Math::sqrt(2 * Math_PI)) * Math::exp(-z * z / 2))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Bias updation
_bias -= learning_rate * error * ((1 / Math::sqrt(2 * Math_PI)) * Math::exp(-z * z / 2));
y_hat = evaluatev(input_set_row_tmp);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_tmp, output_set_tmp));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPProbitReg::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
Ref<MLPPVector> z_tmp;
z_tmp.instance();
z_tmp->resize(1);
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input = batches.input_sets[i];
Ref<MLPPVector> current_output = batches.output_sets[i];
Ref<MLPPVector> y_hat = evaluatem(current_input);
real_t z = propagatev(current_output);
z_tmp->element_set(0, z);
cost_prev = cost(y_hat, current_output);
Ref<MLPPVector> error = y_hat->subn(current_output);
// Calculating the weight gradients
_weights->sub(current_input->transposen()->mult_vec(error->hadamard_productn(avn.gaussian_cdf_derivv(z_tmp)))->scalar_multiplyn(learning_rate / batches.input_sets.size()));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias -= learning_rate * error->hadamard_productn(avn.gaussian_cdf_derivv(z_tmp))->sum_elements() / batches.input_sets.size();
y_hat = evaluatev(current_input);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
real_t MLPPProbitReg::score() {
ERR_FAIL_COND_V(needs_init(), 0);
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
}
bool MLPPProbitReg::needs_init() const {
if (!_input_set.is_valid()) {
return true;
}
if (!_output_set.is_valid()) {
return true;
}
int n = _input_set->size().y;
int k = _input_set->size().x;
if (_y_hat->size() != n) {
return true;
}
if (_weights->size() != k) {
return true;
}
return false;
}
void MLPPProbitReg::initialize() {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
int n = _input_set->size().y;
int k = _input_set->size().x;
_y_hat->resize(n);
MLPPUtilities util;
_weights->resize(k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
}
MLPPProbitReg::MLPPProbitReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_z.instance();
_y_hat.instance();
_weights.instance();
_bias = 0;
initialize();
}
MLPPProbitReg::MLPPProbitReg() {
// Regularization Params
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
_lambda = 0.5;
_alpha = 0.5;
_z.instance();
_y_hat.instance();
_weights.instance();
_bias = 0;
}
MLPPProbitReg::~MLPPProbitReg() {
}
real_t MLPPProbitReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
}
Ref<MLPPVector> MLPPProbitReg::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPActivation avn;
return avn.gaussian_cdf_normv(X->mult_vec(_weights)->scalar_addn(_bias));
}
Ref<MLPPVector> MLPPProbitReg::propagatem(const Ref<MLPPMatrix> &X) {
return X->mult_vec(_weights)->scalar_addn(_bias);
}
real_t MLPPProbitReg::evaluatev(const Ref<MLPPVector> &x) {
MLPPActivation avn;
return avn.gaussian_cdf_normr(_weights->dot(x) + _bias);
}
real_t MLPPProbitReg::propagatev(const Ref<MLPPVector> &x) {
return _weights->dot(x) + _bias;
}
// gaussianCDF ( wTx + b )
void MLPPProbitReg::forward_pass() {
MLPPActivation avn;
_z = propagatem(_input_set);
_y_hat = avn.gaussian_cdf_normv(_z);
}
void MLPPProbitReg::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPProbitReg::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPProbitReg::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPProbitReg::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPProbitReg::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPProbitReg::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPProbitReg::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPProbitReg::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPProbitReg::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPProbitReg::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPProbitReg::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ADD_GROUP("Data", "data");
ClassDB::bind_method(D_METHOD("data_z_get"), &MLPPProbitReg::data_z_get);
ClassDB::bind_method(D_METHOD("data_z_set", "val"), &MLPPProbitReg::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_z_set", "data_z_get");
ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPProbitReg::data_y_hat_get);
ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPProbitReg::data_y_hat_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_y_hat_set", "data_y_hat_get");
ClassDB::bind_method(D_METHOD("data_weights_get"), &MLPPProbitReg::data_weights_get);
ClassDB::bind_method(D_METHOD("data_weights_set", "val"), &MLPPProbitReg::data_weights_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_weights_set", "data_weights_get");
ClassDB::bind_method(D_METHOD("data_bias_get"), &MLPPProbitReg::data_bias_get);
ClassDB::bind_method(D_METHOD("data_bias_set", "val"), &MLPPProbitReg::data_bias_set);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "data_bias"), "data_bias_set", "data_bias_get");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPProbitReg::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPProbitReg::model_test);
ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::train_gradient_descent, 0, false);
ClassDB::bind_method(D_METHOD("train_mle", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::train_mle, 0, false);
ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::train_sgd, 0, false);
ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPProbitReg::train_mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPProbitReg::score);
ClassDB::bind_method(D_METHOD("needs_init"), &MLPPProbitReg::needs_init);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPProbitReg::initialize);
}