mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-31 16:17:10 +01:00
323 lines
12 KiB
C++
323 lines
12 KiB
C++
/*************************************************************************/
|
|
/* mann.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2022-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "mann.h"
|
|
|
|
#include "core/log/logger.h"
|
|
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
/*
|
|
Ref<MLPPMatrix> MLPPMANN::get_input_set() {
|
|
return input_set;
|
|
}
|
|
void MLPPMANN::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
input_set = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPMANN::get_output_set() {
|
|
return output_set;
|
|
}
|
|
void MLPPMANN::set_output_set(const Ref<MLPPMatrix> &val) {
|
|
output_set = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
*/
|
|
|
|
Ref<MLPPMatrix> MLPPMANN::model_set_test(const Ref<MLPPMatrix> &X) {
|
|
ERR_FAIL_COND_V(!_initialized, Ref<MLPPMatrix>());
|
|
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[0];
|
|
|
|
layer->set_input(X);
|
|
layer->forward_pass();
|
|
|
|
for (int i = 1; i < _network.size(); i++) {
|
|
layer = _network[i];
|
|
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
|
|
|
|
layer->set_input(prev_layer->get_a());
|
|
layer->forward_pass();
|
|
}
|
|
|
|
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
|
} else {
|
|
_output_layer->set_input(X);
|
|
}
|
|
|
|
_output_layer->forward_pass();
|
|
|
|
return _output_layer->get_a();
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPMANN::model_test(const Ref<MLPPVector> &x) {
|
|
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
|
|
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[0];
|
|
|
|
layer->test(x);
|
|
|
|
for (int i = 1; i < _network.size(); i++) {
|
|
layer = _network[i];
|
|
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
|
|
|
|
layer->test(prev_layer->get_a_test());
|
|
}
|
|
|
|
_output_layer->test(_network.write[_network.size() - 1]->get_a_test());
|
|
} else {
|
|
_output_layer->test(x);
|
|
}
|
|
|
|
return _output_layer->get_a_test();
|
|
}
|
|
|
|
void MLPPMANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
ERR_FAIL_COND(!_initialized);
|
|
|
|
MLPPCost mlpp_cost;
|
|
MLPPActivation avn;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
if (_output_layer->get_activation() == MLPPActivation::ACTIVATION_FUNCTION_SOFTMAX) {
|
|
_output_layer->set_delta(_y_hat->subn(_output_set));
|
|
} else {
|
|
Ref<MLPPMatrix> r1 = mlpp_cost.run_cost_deriv_matrix(_output_layer->get_cost(), _y_hat, _output_set);
|
|
Ref<MLPPMatrix> r2 = avn.run_activation_deriv_matrix(_output_layer->get_activation(), _output_layer->get_z());
|
|
|
|
_output_layer->set_delta(r1->hadamard_productn(r2));
|
|
}
|
|
|
|
Ref<MLPPMatrix> output_w_grad = _output_layer->get_input()->transposen()->multn(_output_layer->get_delta());
|
|
|
|
_output_layer->set_weights(_output_layer->get_weights()->subn(output_w_grad->scalar_multiplyn(learning_rate / _n)));
|
|
_output_layer->set_weights(regularization.reg_weightsm(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(),
|
|
_output_layer->get_reg()));
|
|
|
|
_output_layer->set_bias(_output_layer->get_bias()->subtract_matrix_rowsn(_output_layer->get_delta()->scalar_multiplyn(learning_rate / _n)));
|
|
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
|
|
|
layer->set_delta(_output_layer->get_delta()->multn(_output_layer->get_weights()->transposen())->hadamard_productn(avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
|
|
|
|
Ref<MLPPMatrix> hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta());
|
|
|
|
layer->set_weights(layer->get_weights()->subn(hidden_layer_w_grad->scalar_multiplyn(learning_rate / _n)));
|
|
layer->set_weights(regularization.reg_weightsm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
|
|
|
|
layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n)));
|
|
|
|
for (int i = _network.size() - 2; i >= 0; i--) {
|
|
layer = _network[i];
|
|
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
|
|
|
|
layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights())->hadamard_productn(avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
|
|
|
|
hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta());
|
|
|
|
layer->set_weights(layer->get_weights()->subn(hidden_layer_w_grad->scalar_multiplyn(learning_rate / _n)));
|
|
layer->set_weights(regularization.reg_weightsm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
|
|
layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n)));
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
PLOG_MSG("Layer " + itos(_network.size() + 1) + ": ");
|
|
MLPPUtilities::print_ui_mb(_output_layer->get_weights(), _output_layer->get_bias());
|
|
|
|
if (!_network.empty()) {
|
|
for (int i = _network.size() - 1; i >= 0; i--) {
|
|
PLOG_MSG("Layer " + itos(i + 1) + ": ");
|
|
|
|
Ref<MLPPHiddenLayer> layer = _network[i];
|
|
|
|
MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias());
|
|
}
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t MLPPMANN::score() {
|
|
ERR_FAIL_COND_V(!_initialized, 0);
|
|
|
|
MLPPUtilities util;
|
|
|
|
forward_pass();
|
|
|
|
return util.performance_mat(_y_hat, _output_set);
|
|
}
|
|
|
|
void MLPPMANN::save(const String &file_name) {
|
|
ERR_FAIL_COND(!_initialized);
|
|
|
|
/*
|
|
MLPPUtilities util;
|
|
if (!_network.empty()) {
|
|
util.saveParameters(file_name, _network[0].weights, _network[0].bias, false, 1);
|
|
for (uint32_t i = 1; i < _network.size(); i++) {
|
|
util.saveParameters(file_name, _network[i].weights, _network[i].bias, true, i + 1);
|
|
}
|
|
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, true, _network.size() + 1);
|
|
} else {
|
|
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, false, _network.size() + 1);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void MLPPMANN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
|
|
if (_network.empty()) {
|
|
_network.push_back(Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _input_set, weight_init, reg, lambda, alpha))));
|
|
_network.write[0]->forward_pass();
|
|
} else {
|
|
_network.push_back(Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha))));
|
|
_network.write[_network.size() - 1]->forward_pass();
|
|
}
|
|
}
|
|
|
|
void MLPPMANN::add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
|
|
if (!_network.empty()) {
|
|
_output_layer = Ref<MLPPMultiOutputLayer>(memnew(MLPPMultiOutputLayer(_n_output, _network.write[_network.size() - 1]->get_n_hidden(), activation, loss, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha)));
|
|
} else {
|
|
_output_layer = Ref<MLPPMultiOutputLayer>(memnew(MLPPMultiOutputLayer(_n_output, _k, activation, loss, _input_set, weight_init, reg, lambda, alpha)));
|
|
}
|
|
}
|
|
|
|
bool MLPPMANN::is_initialized() {
|
|
return _initialized;
|
|
}
|
|
|
|
void MLPPMANN::initialize() {
|
|
if (_initialized) {
|
|
return;
|
|
}
|
|
|
|
//ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0);
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPMANN::MLPPMANN(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_n = _input_set->size().y;
|
|
_k = _input_set->size().x;
|
|
_n_output = _output_set->size().x;
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPMANN::MLPPMANN() {
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPMANN::~MLPPMANN() {
|
|
}
|
|
|
|
real_t MLPPMANN::cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y) {
|
|
MLPPReg regularization;
|
|
MLPPCost mlpp_cost;
|
|
|
|
real_t total_reg_term = 0;
|
|
|
|
if (!_network.empty()) {
|
|
for (int i = 0; i < _network.size() - 1; i++) {
|
|
Ref<MLPPHiddenLayer> layer = _network[i];
|
|
|
|
total_reg_term += regularization.reg_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg());
|
|
}
|
|
}
|
|
|
|
return mlpp_cost.run_cost_norm_matrix(_output_layer->get_cost(), y_hat, y) + total_reg_term + regularization.reg_termm(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg());
|
|
}
|
|
|
|
void MLPPMANN::forward_pass() {
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[0];
|
|
|
|
layer->set_input(_input_set);
|
|
layer->forward_pass();
|
|
|
|
for (int i = 1; i < _network.size(); i++) {
|
|
layer = _network[i];
|
|
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
|
|
|
|
layer->set_input(prev_layer->get_a());
|
|
layer->forward_pass();
|
|
}
|
|
|
|
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
|
} else {
|
|
_output_layer->set_input(_input_set);
|
|
}
|
|
|
|
_output_layer->forward_pass();
|
|
|
|
_y_hat = _output_layer->get_a();
|
|
}
|
|
|
|
void MLPPMANN::_bind_methods() {
|
|
/*
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMANN::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMANN::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMANN::get_output_set);
|
|
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMANN::set_output_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set");
|
|
*/
|
|
}
|