mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-13 13:57:19 +01:00
419 lines
17 KiB
C++
419 lines
17 KiB
C++
/*************************************************************************/
|
|
/* gan.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2022-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "gan.h"
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include "core/log/logger.h"
|
|
|
|
#include <cmath>
|
|
#include <iostream>
|
|
|
|
/*
|
|
Ref<MLPPMatrix> MLPPGAN::get_input_set() {
|
|
return _input_set;
|
|
}
|
|
void MLPPGAN::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
_input_set = val;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPGAN::get_output_set() {
|
|
return _output_set;
|
|
}
|
|
void MLPPGAN::set_output_set(const Ref<MLPPVector> &val) {
|
|
_output_set = val;
|
|
}
|
|
|
|
int MLPPGAN::get_k() {
|
|
return _k;
|
|
}
|
|
void MLPPGAN::set_k(const int val) {
|
|
_k = val;
|
|
}
|
|
*/
|
|
|
|
Ref<MLPPMatrix> MLPPGAN::generate_example(int n) {
|
|
return model_set_test_generator(MLPPMatrix::create_gaussian_noise(n, _k));
|
|
}
|
|
|
|
void MLPPGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPCost mlpp_cost;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, MLPPVector::create_vec_one(_n));
|
|
|
|
// Training of the discriminator.
|
|
|
|
Ref<MLPPMatrix> generator_input_set = MLPPMatrix::create_gaussian_noise(_n, _k);
|
|
Ref<MLPPMatrix> discriminator_input_set = model_set_test_generator(generator_input_set);
|
|
discriminator_input_set->rows_add_mlpp_matrix(_output_set); // Fake + real inputs.
|
|
|
|
Ref<MLPPVector> y_hat = model_set_test_discriminator(discriminator_input_set);
|
|
Ref<MLPPVector> output_set = MLPPVector::create_vec_zero(_n);
|
|
Ref<MLPPVector> output_set_real = MLPPVector::create_vec_one(_n);
|
|
output_set->append_mlpp_vector(output_set_real); // Fake + real output scores.
|
|
|
|
ComputeDiscriminatorGradientsResult dgrads = compute_discriminator_gradients(y_hat, _output_set);
|
|
|
|
dgrads.cumulative_hidden_layer_w_grad->scalar_multiply(learning_rate / _n);
|
|
dgrads.output_w_grad->scalar_multiply(learning_rate / _n);
|
|
|
|
update_discriminator_parameters(dgrads.cumulative_hidden_layer_w_grad, dgrads.output_w_grad, learning_rate);
|
|
|
|
// Training of the generator.
|
|
generator_input_set = MLPPMatrix::create_gaussian_noise(_n, _k);
|
|
discriminator_input_set = model_set_test_generator(generator_input_set);
|
|
y_hat = model_set_test_discriminator(discriminator_input_set);
|
|
_output_set = MLPPVector::create_vec_one(_n);
|
|
|
|
Ref<MLPPTensor3> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(y_hat, _output_set);
|
|
|
|
cumulative_generator_hidden_layer_w_grad->scalar_multiply(learning_rate / _n);
|
|
|
|
update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate);
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
print_ui(epoch, cost_prev, _y_hat, MLPPVector::create_vec_one(_n));
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t MLPPGAN::score() {
|
|
MLPPUtilities util;
|
|
|
|
forward_pass();
|
|
|
|
return util.performance_vec(_y_hat, MLPPVector::create_vec_one(_n));
|
|
}
|
|
|
|
void MLPPGAN::save(const String &file_name) {
|
|
MLPPUtilities util;
|
|
/*
|
|
if (!_network.empty()) {
|
|
util.saveParameters(file_name, _network[0].weights, _network[0].bias, false, 1);
|
|
for (uint32_t i = 1; i < _network.size(); i++) {
|
|
util.saveParameters(file_name, _network[i].weights, _network[i].bias, true, i + 1);
|
|
}
|
|
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, true, _network.size() + 1);
|
|
} else {
|
|
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, false, _network.size() + 1);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void MLPPGAN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
|
|
if (_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, MLPPMatrix::create_gaussian_noise(_n, _k), weight_init, reg, lambda, alpha)));
|
|
|
|
_network.push_back(layer);
|
|
|
|
_network.write[0]->forward_pass();
|
|
} else {
|
|
Ref<MLPPHiddenLayer> layer = Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha)));
|
|
|
|
_network.push_back(layer);
|
|
|
|
_network.write[_network.size() - 1]->forward_pass();
|
|
}
|
|
}
|
|
|
|
void MLPPGAN::add_output_layer(MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
|
|
if (!_network.empty()) {
|
|
_output_layer = Ref<MLPPOutputLayer>(memnew(MLPPOutputLayer(_network.write[_network.size() - 1]->get_n_hidden(), MLPPActivation::ACTIVATION_FUNCTION_SIGMOID, MLPPCost::COST_TYPE_LOGISTIC_LOSS, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha)));
|
|
} else {
|
|
_output_layer = Ref<MLPPOutputLayer>(memnew(MLPPOutputLayer(_k, MLPPActivation::ACTIVATION_FUNCTION_SIGMOID, MLPPCost::COST_TYPE_LOGISTIC_LOSS, MLPPMatrix::create_gaussian_noise(_n, _k), weight_init, reg, lambda, alpha)));
|
|
}
|
|
}
|
|
|
|
MLPPGAN::MLPPGAN(real_t k, const Ref<MLPPMatrix> &output_set) {
|
|
_output_set = output_set;
|
|
_n = _output_set->size().y;
|
|
_k = k;
|
|
}
|
|
|
|
MLPPGAN::MLPPGAN() {
|
|
}
|
|
|
|
MLPPGAN::~MLPPGAN() {
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPGAN::model_set_test_generator(const Ref<MLPPMatrix> &X) {
|
|
if (!_network.empty()) {
|
|
_network.write[0]->set_input(X);
|
|
_network.write[0]->forward_pass();
|
|
|
|
for (int i = 1; i <= _network.size() / 2; i++) {
|
|
_network.write[i]->set_input(_network.write[i - 1]->get_a());
|
|
_network.write[i]->forward_pass();
|
|
}
|
|
}
|
|
|
|
return _network.write[_network.size() / 2]->get_a();
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPGAN::model_set_test_discriminator(const Ref<MLPPMatrix> &X) {
|
|
if (!_network.empty()) {
|
|
for (int i = _network.size() / 2 + 1; i < _network.size(); i++) {
|
|
if (i == _network.size() / 2 + 1) {
|
|
_network.write[i]->set_input(X);
|
|
} else {
|
|
_network.write[i]->set_input(_network.write[i - 1]->get_a());
|
|
}
|
|
|
|
_network.write[i]->forward_pass();
|
|
}
|
|
|
|
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
|
}
|
|
|
|
_output_layer->forward_pass();
|
|
|
|
return _output_layer->get_a();
|
|
}
|
|
|
|
real_t MLPPGAN::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
|
|
MLPPReg regularization;
|
|
MLPPCost mlpp_cost;
|
|
real_t total_reg_term = 0;
|
|
|
|
if (!_network.empty()) {
|
|
for (int i = 0; i < _network.size() - 1; i++) {
|
|
total_reg_term += regularization.reg_termm(_network.write[i]->get_weights(), _network.write[i]->get_lambda(), _network.write[i]->get_alpha(), _network.write[i]->get_reg());
|
|
}
|
|
}
|
|
|
|
return mlpp_cost.run_cost_norm_vector(_output_layer->get_cost(), y_hat, y) + total_reg_term + regularization.reg_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg());
|
|
}
|
|
|
|
void MLPPGAN::forward_pass() {
|
|
if (!_network.empty()) {
|
|
_network.write[0]->set_input(MLPPMatrix::create_gaussian_noise(_n, _k));
|
|
_network.write[0]->forward_pass();
|
|
|
|
for (int i = 1; i < _network.size(); i++) {
|
|
_network.write[i]->set_input(_network.write[i - 1]->get_a());
|
|
_network.write[i]->forward_pass();
|
|
}
|
|
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
|
} else { // Should never happen, though.
|
|
_output_layer->set_input(MLPPMatrix::create_gaussian_noise(_n, _k));
|
|
}
|
|
|
|
_output_layer->forward_pass();
|
|
_y_hat = _output_layer->get_a();
|
|
}
|
|
|
|
void MLPPGAN::update_discriminator_parameters(const Ref<MLPPTensor3> &hidden_layer_updations, const Ref<MLPPVector> &output_layer_updation, real_t learning_rate) {
|
|
_output_layer->set_weights(_output_layer->get_weights()->subn(output_layer_updation));
|
|
real_t output_layer_bias = _output_layer->get_bias();
|
|
output_layer_bias -= learning_rate * _output_layer->get_delta()->sum_elements() / _n;
|
|
_output_layer->set_bias(output_layer_bias);
|
|
|
|
Ref<MLPPMatrix> slice;
|
|
slice.instance();
|
|
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
|
|
|
hidden_layer_updations->z_slice_get_into_mlpp_matrix(0, slice);
|
|
|
|
layer->set_weights(layer->get_weights()->subn(slice));
|
|
layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n)));
|
|
|
|
for (int i = _network.size() - 2; i > _network.size() / 2; i--) {
|
|
layer = _network[i];
|
|
|
|
hidden_layer_updations->z_slice_get_into_mlpp_matrix((_network.size() - 2) - i + 1, slice);
|
|
|
|
layer->set_weights(layer->get_weights()->subn(slice));
|
|
layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPGAN::update_generator_parameters(const Ref<MLPPTensor3> &hidden_layer_updations, real_t learning_rate) {
|
|
if (!_network.empty()) {
|
|
Ref<MLPPMatrix> slice;
|
|
slice.instance();
|
|
|
|
for (int i = _network.size() / 2; i >= 0; i--) {
|
|
Ref<MLPPHiddenLayer> layer = _network[i];
|
|
|
|
hidden_layer_updations->z_slice_get_into_mlpp_matrix((_network.size() - 2) - i + 1, slice);
|
|
|
|
//std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl;
|
|
//std::cout << hidden_layer_updations[(network.size() - 2) - i + 1].size() << "x" << hidden_layer_updations[(network.size() - 2) - i + 1][0].size() << std::endl;
|
|
layer->set_weights(layer->get_weights()->subn(slice));
|
|
layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n)));
|
|
}
|
|
}
|
|
}
|
|
|
|
MLPPGAN::ComputeDiscriminatorGradientsResult MLPPGAN::compute_discriminator_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set) {
|
|
MLPPCost mlpp_cost;
|
|
MLPPActivation avn;
|
|
MLPPReg regularization;
|
|
|
|
ComputeDiscriminatorGradientsResult res;
|
|
|
|
Ref<MLPPVector> cost_deriv = mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, _output_set);
|
|
Ref<MLPPVector> activ_deriv = avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z());
|
|
|
|
_output_layer->set_delta(cost_deriv->hadamard_productn(activ_deriv));
|
|
|
|
res.output_w_grad = _output_layer->get_input()->transposen()->mult_vec(_output_layer->get_delta());
|
|
res.output_w_grad->add(regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()));
|
|
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
|
|
|
Ref<MLPPVector> hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z());
|
|
|
|
layer->set_delta(_output_layer->get_delta()->outer_product(_output_layer->get_weights())->hadamard_productn(hidden_layer_activ_deriv));
|
|
|
|
Ref<MLPPMatrix> hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta());
|
|
|
|
hidden_layer_w_grad->add(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
|
|
res.cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
|
|
|
for (int i = static_cast<int>(_network.size()) - 2; i > static_cast<int>(_network.size()) / 2; i--) {
|
|
layer = _network[i];
|
|
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
|
|
|
|
hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z());
|
|
|
|
layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights()->transposen())->hadamard_productn(hidden_layer_activ_deriv));
|
|
|
|
hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta());
|
|
|
|
res.cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad->addn(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
Ref<MLPPTensor3> MLPPGAN::compute_generator_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set) {
|
|
MLPPCost mlpp_cost;
|
|
MLPPActivation avn;
|
|
MLPPReg regularization;
|
|
|
|
Ref<MLPPTensor3> cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads.
|
|
|
|
Ref<MLPPVector> cost_deriv = mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, _output_set);
|
|
Ref<MLPPVector> activ_deriv = avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z());
|
|
|
|
_output_layer->set_delta(cost_deriv->hadamard_productn(activ_deriv));
|
|
|
|
Ref<MLPPVector> output_w_grad = _output_layer->get_input()->transposen()->mult_vec(_output_layer->get_delta());
|
|
|
|
output_w_grad->add(regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()));
|
|
|
|
if (!_network.empty()) {
|
|
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
|
|
|
Ref<MLPPVector> hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z());
|
|
|
|
layer->set_delta(_output_layer->get_delta()->outer_product(_output_layer->get_weights())->hadamard_productn(hidden_layer_activ_deriv));
|
|
|
|
Ref<MLPPMatrix> hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta());
|
|
hidden_layer_w_grad->add(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
|
|
|
|
cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
|
|
|
for (int i = _network.size() - 2; i >= 0; i--) {
|
|
layer = _network[i];
|
|
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
|
|
|
|
hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z());
|
|
|
|
layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights()->transposen())->hadamard_productn(hidden_layer_activ_deriv));
|
|
|
|
hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta());
|
|
hidden_layer_w_grad->add(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
|
|
|
|
cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
|
}
|
|
}
|
|
|
|
return cumulative_hidden_layer_w_grad;
|
|
}
|
|
|
|
void MLPPGAN::print_ui(int epoch, real_t cost_prev, const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set) {
|
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, _output_set));
|
|
|
|
PLOG_MSG("Layer " + itos(_network.size() + 1) + ": ");
|
|
MLPPUtilities::print_ui_vb(_output_layer->get_weights(), _output_layer->get_bias());
|
|
|
|
if (!_network.empty()) {
|
|
for (int i = _network.size() - 1; i >= 0; i--) {
|
|
Ref<MLPPHiddenLayer> layer = _network[i];
|
|
|
|
PLOG_MSG("Layer " + itos(i + 1) + ": ");
|
|
MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias());
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPGAN::_bind_methods() {
|
|
/*
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGAN::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGAN::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGAN::get_output_set);
|
|
ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGAN::set_output_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_k"), &MLPPGAN::get_k);
|
|
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGAN::set_k);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
|
|
|
|
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGAN::model_set_test);
|
|
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGAN::model_test);
|
|
ClassDB::bind_method(D_METHOD("score"), &MLPPGAN::score);
|
|
*/
|
|
}
|