pmlpp/dual_svc/dual_svc.h

108 lines
4.1 KiB
C++

#ifndef MLPP_DUAL_SVC_H
#define MLPP_DUAL_SVC_H
/*************************************************************************/
/* dual_svc.h */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2023-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
// http://disp.ee.ntu.edu.tw/~pujols/Support%20Vector%20Machine.pdf
// http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf
// Were excellent for the practical intution behind the dual formulation.
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
class MLPPDualSVC : public Reference {
GDCLASS(MLPPDualSVC, Reference);
public:
enum KernelMethod {
KERNEL_METHOD_LINEAR = 0,
};
public:
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
//void SGD(real_t learning_rate, int max_epoch, bool ui = false);
//void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
void save(const String &file_name);
MLPPDualSVC(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, real_t p_C, KernelMethod p_kernel = KERNEL_METHOD_LINEAR);
MLPPDualSVC();
~MLPPDualSVC();
protected:
void init();
real_t cost(const Ref<MLPPVector> &alpha, const Ref<MLPPMatrix> &X, const Ref<MLPPVector> &y);
real_t evaluatev(const Ref<MLPPVector> &x);
real_t propagatev(const Ref<MLPPVector> &x);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
Ref<MLPPVector> propagatem(const Ref<MLPPMatrix> &X);
void forward_pass();
void alpha_projection();
real_t kernel_functionv(const Ref<MLPPVector> &v, const Ref<MLPPVector> &u, KernelMethod kernel);
Ref<MLPPMatrix> kernel_functionm(const Ref<MLPPMatrix> &U, const Ref<MLPPMatrix> &V, KernelMethod kernel);
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _z;
Ref<MLPPVector> _y_hat;
real_t _bias;
Ref<MLPPVector> _alpha;
Ref<MLPPMatrix> _K;
real_t _C;
int _n;
int _k;
KernelMethod _kernel;
real_t _p; // Poly
real_t _c; // Poly
};
#endif /* DualSVC_hpp */