mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-08 13:12:09 +01:00
721 lines
27 KiB
C++
721 lines
27 KiB
C++
//
|
|
// main.cpp
|
|
// TEST_APP
|
|
//
|
|
// Created by Marc on 1/20/21.
|
|
//
|
|
|
|
// THINGS CURRENTLY TO DO:
|
|
// POLYMORPHIC IMPLEMENTATION OF REGRESSION CLASSES
|
|
// EXTEND SGD/MBGD SUPPORT FOR DYN. SIZED ANN
|
|
// ADD LEAKYRELU, ELU, SELU TO ANN
|
|
// FIX VECTOR/MATRIX/TENSOR RESIZE ROUTINE
|
|
|
|
// HYPOTHESIS TESTING CLASS
|
|
// GAUSS MARKOV CHECKER CLASS
|
|
|
|
#include <iostream>
|
|
#include <ctime>
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include "MLPP/UniLinReg/UniLinReg.hpp"
|
|
#include "MLPP/LinReg/LinReg.hpp"
|
|
#include "MLPP/LogReg/LogReg.hpp"
|
|
#include "MLPP/CLogLogReg/CLogLogReg.hpp"
|
|
#include "MLPP/ExpReg/ExpReg.hpp"
|
|
#include "MLPP/ProbitReg/ProbitReg.hpp"
|
|
#include "MLPP/SoftmaxReg/SoftmaxReg.hpp"
|
|
#include "MLPP/TanhReg/TanhReg.hpp"
|
|
#include "MLPP/MLP/MLP.hpp"
|
|
#include "MLPP/SoftmaxNet/SoftmaxNet.hpp"
|
|
#include "MLPP/AutoEncoder/AutoEncoder.hpp"
|
|
#include "MLPP/ANN/ANN.hpp"
|
|
#include "MLPP/MANN/MANN.hpp"
|
|
#include "MLPP/MultinomialNB/MultinomialNB.hpp"
|
|
#include "MLPP/BernoulliNB/BernoulliNB.hpp"
|
|
#include "MLPP/GaussianNB/GaussianNB.hpp"
|
|
#include "MLPP/KMeans/KMeans.hpp"
|
|
#include "MLPP/kNN/kNN.hpp"
|
|
#include "MLPP/PCA/PCA.hpp"
|
|
#include "MLPP/OutlierFinder/OutlierFinder.hpp"
|
|
#include "MLPP/Stat/Stat.hpp"
|
|
#include "MLPP/LinAlg/LinAlg.hpp"
|
|
#include "MLPP/Activation/Activation.hpp"
|
|
#include "MLPP/Cost/Cost.hpp"
|
|
#include "MLPP/Data/Data.hpp"
|
|
#include "MLPP/Convolutions/Convolutions.hpp"
|
|
#include "MLPP/SVC/SVC.hpp"
|
|
#include "MLPP/NumericalAnalysis/NumericalAnalysis.hpp"
|
|
#include "MLPP/DualSVC/DualSVC.hpp"
|
|
#include "MLPP/GAN/GAN.hpp"
|
|
#include "MLPP/WGAN/WGAN.hpp"
|
|
#include "MLPP/Transforms/Transforms.hpp"
|
|
|
|
|
|
// real_t f(real_t x){
|
|
// return x*x*x + 2*x - 2;
|
|
// }
|
|
|
|
real_t f(real_t x){
|
|
return sin(x);
|
|
}
|
|
|
|
real_t f_prime(real_t x){
|
|
return 2 * x;
|
|
}
|
|
|
|
real_t f_prime_2var(std::vector<real_t> x){
|
|
return 2 * x[0] + x[1];
|
|
}
|
|
/*
|
|
y = x^3 + 2x - 2
|
|
y' = 3x^2 + 2
|
|
y'' = 6x
|
|
y''(2) = 12
|
|
*/
|
|
|
|
// real_t f_mv(std::vector<real_t> x){
|
|
// return x[0] * x[0] + x[0] * x[1] * x[1] + x[1] + 5;
|
|
// }
|
|
|
|
/*
|
|
Where x, y = x[0], x[1], this function is defined as:
|
|
f(x, y) = x^2 + xy^2 + y + 5
|
|
∂f/∂x = 2x + 2y
|
|
∂^2f/∂x∂y = 2
|
|
*/
|
|
|
|
real_t f_mv(std::vector<real_t> x){
|
|
return x[0] * x[0] * x[0] + x[0] + x[1] * x[1] * x[1] * x[0] + x[2] * x[2] * x[1];
|
|
}
|
|
|
|
/*
|
|
Where x, y = x[0], x[1], this function is defined as:
|
|
f(x, y) = x^3 + x + xy^3 + yz^2
|
|
|
|
fy = 3xy^2 + 2yz
|
|
fyy = 6xy + 2z
|
|
fyyz = 2
|
|
|
|
∂^2f/∂y^2 = 6xy + 2z
|
|
∂^3f/∂y^3 = 6x
|
|
|
|
∂f/∂z = 2zy
|
|
∂^2f/∂z^2 = 2y
|
|
∂^3f/∂z^3 = 0
|
|
|
|
∂f/∂x = 3x^2 + 1 + y^3
|
|
∂^2f/∂x^2 = 6x
|
|
∂^3f/∂x^3 = 6
|
|
|
|
∂f/∂z = 2zy
|
|
∂^2f/∂z^2 = 2z
|
|
|
|
∂f/∂y = 3xy^2
|
|
∂^2f/∂y∂x = 3y^2
|
|
|
|
*/
|
|
|
|
|
|
int main() {
|
|
|
|
// // OBJECTS
|
|
MLPPStat stat;
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
MLPPCost cost;
|
|
MLPPData data;
|
|
MLPPConvolutions conv;
|
|
|
|
// DATA SETS
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
|
// std::vector<real_t> outputSet = {2,4,6,8,10,12,14,16,18,20};
|
|
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
|
// std::vector<real_t> outputSet = {0,0,0,0,1,1,1,1};
|
|
|
|
// std::vector<std::vector<real_t>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
|
// std::vector<real_t> outputSet = {1,1,0,-1,-1};
|
|
|
|
// std::vector<std::vector<real_t>> inputSet = {{0,1,2,3,4}};
|
|
// std::vector<real_t> outputSet = {1,2,4,8,16};
|
|
|
|
//std::vector<std::vector<real_t>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
|
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,1,0,0,1}, {0,0,1,1,1}, {0,1,1,0,1}};
|
|
// std::vector<real_t> outputSet = {0,1,0,1,1};
|
|
|
|
// std::vector<std::vector<real_t>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
|
// std::vector<real_t> outputSet = {0,1,1,0};
|
|
|
|
// // STATISTICS
|
|
// std::vector<real_t> x = {1,2,3,4,5,6,7,8,9,10};
|
|
// std::vector<real_t> y = {10,9,8,7,6,5,4,3,2,1};
|
|
// std::vector<real_t> w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1};
|
|
|
|
// std::cout << "Arithmetic Mean: " << stat.mean(x) << std::endl;
|
|
// std::cout << "Median: " << stat.median(x) << std::endl;
|
|
// alg.printVector(x);
|
|
// alg.printVector(stat.mode(x));
|
|
// std::cout << "Range: " << stat.range(x) << std::endl;
|
|
// std::cout << "Midrange: " << stat.midrange(x) << std::endl;
|
|
// std::cout << "Absolute Average Deviation: " << stat.absAvgDeviation(x) << std::endl;
|
|
// std::cout << "Standard Deviation: " << stat.standardDeviation(x) << std::endl;
|
|
// std::cout << "Variance: " << stat.variance(x) << std::endl;
|
|
// std::cout << "Covariance: " << stat.covariance(x, y) << std::endl;
|
|
// std::cout << "Correlation: " << stat.correlation(x, y) << std::endl;
|
|
// std::cout << "R^2: " << stat.R2(x, y) << std::endl;
|
|
// // Returns 1 - (1/k^2)
|
|
// std::cout << "Chebyshev Inequality: " << stat.chebyshevIneq(2) << std::endl;
|
|
// std::cout << "Weighted Mean: " << stat.weightedMean(x, w) << std::endl;
|
|
// std::cout << "Geometric Mean: " << stat.geometricMean(x) << std::endl;
|
|
// std::cout << "Harmonic Mean: " << stat.harmonicMean(x) << std::endl;
|
|
// std::cout << "Root Mean Square (Quadratic mean): " << stat.RMS(x) << std::endl;
|
|
// std::cout << "Power Mean (p = 5): " << stat.powerMean(x, 5) << std::endl;
|
|
// std::cout << "Lehmer Mean (p = 5): " << stat.lehmerMean(x, 5) << std::endl;
|
|
// std::cout << "Weighted Lehmer Mean (p = 5): " << stat.weightedLehmerMean(x, w, 5) << std::endl;
|
|
// std::cout << "Contraharmonic Mean: " << stat.contraHarmonicMean(x) << std::endl;
|
|
// std::cout << "Hernonian Mean: " << stat.heronianMean(1, 10) << std::endl;
|
|
// std::cout << "Heinz Mean (x = 1): " << stat.heinzMean(1, 10, 1) << std::endl;
|
|
// std::cout << "Neuman-Sandor Mean: " << stat.neumanSandorMean(1, 10) << std::endl;
|
|
// std::cout << "Stolarsky Mean (p = 5): " << stat.stolarskyMean(1, 10, 5) << std::endl;
|
|
// std::cout << "Identric Mean: " << stat.identricMean(1, 10) << std::endl;
|
|
// std::cout << "Logarithmic Mean: " << stat.logMean(1, 10) << std::endl;
|
|
// std::cout << "Absolute Average Deviation: " << stat.absAvgDeviation(x) << std::endl;
|
|
|
|
// LINEAR ALGEBRA
|
|
// std::vector<std::vector<real_t>> square = {{1, 1}, {-1, 1}, {1, -1}, {-1, -1}};
|
|
|
|
// alg.printMatrix(alg.rotate(square, M_PI/4));
|
|
|
|
// std::vector<std::vector<real_t>> A = {
|
|
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
|
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
|
// };
|
|
// std::vector<real_t> a = {4, 3, 1, 3};
|
|
// std::vector<real_t> b = {3, 5, 6, 1};
|
|
|
|
// alg.printMatrix(alg.matmult(alg.transpose(A), A));
|
|
// std::cout << std::endl;
|
|
// std::cout << alg.dot(a, b) << std::endl;
|
|
// std::cout << std::endl;
|
|
// alg.printMatrix(alg.hadamard_product(A, A));
|
|
// std::cout << std::endl;
|
|
// alg.printMatrix(alg.identity(10));
|
|
|
|
// UNIVARIATE LINEAR REGRESSION
|
|
// Univariate, simple linear regression, case where k = 1
|
|
// auto [inputSet, outputSet] = data.loadFiresAndCrime();
|
|
// UniLinReg model(inputSet, outputSet);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
|
|
// // MULIVARIATE LINEAR REGRESSION
|
|
// auto [inputSet, outputSet] = data.loadCaliforniaHousing();
|
|
|
|
// LinReg model(inputSet, outputSet); // Can use Lasso, Ridge, ElasticNet Reg
|
|
|
|
//model.gradientDescent(0.001, 30, 0);
|
|
//model.SGD(0.00000001, 300000, 1);
|
|
//model.MBGD(0.001, 10000, 2, 1);
|
|
//model.normalEquation();
|
|
|
|
// LinReg adamModel(alg.transpose(inputSet), outputSet);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
|
|
// const int TRIAL_NUM = 1000;
|
|
|
|
// real_t scoreSGD = 0;
|
|
// real_t scoreADAM = 0;
|
|
// for(int i = 0; i < TRIAL_NUM; i++){
|
|
// LinReg model(alg.transpose(inputSet), outputSet);
|
|
// model.MBGD(0.001, 5, 1, 0);
|
|
// scoreSGD += model.score();
|
|
|
|
// LinReg adamModel(alg.transpose(inputSet), outputSet);
|
|
// adamModel.Adam(0.1, 5, 1, 0.9, 0.999, 1e-8, 0); // Change batch size = sgd, bgd
|
|
// scoreADAM += adamModel.score();
|
|
// }
|
|
|
|
// std::cout << "ACCURACY, AVG, SGD: " << 100 * scoreSGD/TRIAL_NUM << "%" << std::endl;
|
|
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "ACCURACY, AVG, ADAM: " << 100 * scoreADAM/TRIAL_NUM << "%" << std::endl;
|
|
|
|
|
|
// std::cout << "Total epoch num: 300" << std::endl;
|
|
// std::cout << "Method: 1st Order w/ Jacobians" << std::endl;
|
|
|
|
// LinReg model(alg.transpose(inputSet), outputSet); // Can use Lasso, Ridge, ElasticNet Reg
|
|
|
|
// model.gradientDescent(0.001, 300, 0);
|
|
|
|
|
|
// std::cout << "--------------------------------------------" << std::endl;
|
|
// std::cout << "Total epoch num: 300" << std::endl;
|
|
// std::cout << "Method: Newtonian 2nd Order w/ Hessians" << std::endl;
|
|
// LinReg model2(alg.transpose(inputSet), outputSet);
|
|
|
|
// model2.NewtonRaphson(1.5, 300, 0);
|
|
|
|
|
|
// // LOGISTIC REGRESSION
|
|
// auto [inputSet, outputSet] = data.load rastCancer();
|
|
// LogReg model(inputSet, outputSet);
|
|
// model.SGD(0.001, 100000, 0);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // PROBIT REGRESSION
|
|
// std::vector<std::vector<real_t>> inputSet;
|
|
// std::vector<real_t> outputSet;
|
|
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet);
|
|
// ProbitReg model(inputSet, outputSet);
|
|
// model.SGD(0.001, 10000, 1);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // CLOGLOG REGRESSION
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
|
// std::vector<real_t> outputSet = {0,0,0,0,1,1,1,1};
|
|
// CLogLogReg model(alg.transpose(inputSet), outputSet);
|
|
// model.SGD(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // EXPREG REGRESSION
|
|
// std::vector<std::vector<real_t>> inputSet = {{0,1,2,3,4}};
|
|
// std::vector<real_t> outputSet = {1,2,4,8,16};
|
|
// ExpReg model(alg.transpose(inputSet), outputSet);
|
|
// model.SGD(0.001, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // TANH REGRESSION
|
|
// std::vector<std::vector<real_t>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
|
// std::vector<real_t> outputSet = {1,1,0,-1,-1};
|
|
// TanhReg model(alg.transpose(inputSet), outputSet);
|
|
// model.SGD(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // SOFTMAX REGRESSION
|
|
// auto [inputSet, outputSet] = data.loadIris();
|
|
// SoftmaxReg model(inputSet, outputSet);
|
|
// model.SGD(0.1, 10000, 1);
|
|
// alg.printMatrix(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // SUPPORT VECTOR CLASSIFICATION
|
|
// auto [inputSet, outputSet] = data.loadBreastCancerSVC();
|
|
// SVC model(inputSet, outputSet, 1);
|
|
// model.SGD(0.00001, 100000, 1);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// SoftmaxReg model(inputSet, outputSet);
|
|
// model.SGD(0.001, 20000, 0);
|
|
// alg.printMatrix(model.modelSetTest(inputSet));
|
|
|
|
// // MLP
|
|
// std::vector<std::vector<real_t>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
|
// inputSet = alg.transpose(inputSet);
|
|
// std::vector<real_t> outputSet = {0,1,1,0};
|
|
|
|
// MLP model(inputSet, outputSet, 2);
|
|
// model.gradientDescent(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // SOFTMAX NETWORK
|
|
// auto [inputSet, outputSet] = data.loadWine();
|
|
// SoftmaxNet model(inputSet, outputSet, 1);
|
|
// model.gradientDescent(0.01, 100000, 1);
|
|
// alg.printMatrix(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // AUTOENCODER
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
|
// AutoEncoder model(alg.transpose(inputSet), 5);
|
|
// model.SGD(0.001, 300000, 0);
|
|
// alg.printMatrix(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// DYNAMICALLY SIZED ANN
|
|
// Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
|
|
// Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep
|
|
// Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss
|
|
// std::vector<std::vector<real_t>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
|
// std::vector<real_t> outputSet = {0,1,1,0};
|
|
// ANN ann(alg.transpose(inputSet), outputSet);
|
|
// ann.addLayer(2, "Cosh");
|
|
// ann.addOutputLayer("Sigmoid", "LogLoss");
|
|
|
|
|
|
// ann.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, 1);
|
|
// ann.Adadelta(1, 1000, 2, 0.9, 0.000001, 1);
|
|
// ann.Momentum(0.1, 8000, 2, 0.9, true, 1);
|
|
|
|
//ann.setLearningRateScheduler("Step", 0.5, 1000);
|
|
// ann.gradientDescent(0.01, 30000);
|
|
// alg.printVector(ann.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
|
|
|
std::vector<std::vector<real_t>> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},
|
|
{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}};
|
|
|
|
WGAN gan(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan)
|
|
gan.addLayer(5, "Sigmoid");
|
|
gan.addLayer(2, "RELU");
|
|
gan.addLayer(5, "Sigmoid");
|
|
gan.addOutputLayer(); // User can specify weight init- if necessary.
|
|
gan.gradientDescent(0.1, 55000, 0);
|
|
std::cout << "GENERATED INPUT: (Gaussian-sampled noise):" << std::endl;
|
|
alg.printMatrix(gan.generateExample(100));
|
|
|
|
|
|
// typedef std::vector<std::vector<real_t>> Matrix;
|
|
// typedef std::vector<real_t> Vector;
|
|
|
|
// Matrix inputSet = {{0,0}, {0,1}, {1,0}, {1,1}}; // XOR
|
|
// Vector outputSet = {0,1,1,0};
|
|
|
|
// ANN ann(inputSet, outputSet);
|
|
// ann.addLayer(5, "Sigmoid");
|
|
// ann.addLayer(8, "Sigmoid"); // Add more layers as needed.
|
|
// ann.addOutputLayer("Sigmoid", "LogLoss");
|
|
// ann.gradientDescent(1, 20000, 1);
|
|
|
|
// Vector predictions = ann.modelSetTest(inputSet);
|
|
// alg.printVector(predictions); // Testing out the model's preds for train set.
|
|
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy.
|
|
|
|
// // DYNAMICALLY SIZED MANN (Multidimensional Output ANN)
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2,3},{2,4,6},{3,6,9},{4,8,12}};
|
|
// std::vector<std::vector<real_t>> outputSet = {{1,5}, {2,10}, {3,15}, {4,20}};
|
|
|
|
// MANN mann(inputSet, outputSet);
|
|
// mann.addOutputLayer("Linear", "MSE");
|
|
// mann.gradientDescent(0.001, 80000, 0);
|
|
// alg.printMatrix(mann.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl;
|
|
|
|
// std::vector<std::vector<real_t>> inputSet;
|
|
// std::vector<real_t> tempOutputSet;
|
|
// data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet);
|
|
// std::vector<std::vector<real_t>> outputSet = data.oneHotRep(tempOutputSet, 3);
|
|
|
|
// TRAIN TEST SPLIT CHECK
|
|
// std::vector<std::vector<real_t>> inputSet1 = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
|
// std::vector<std::vector<real_t>> outputSet1 = {{2,4,6,8,10,12,14,16,18,20}};
|
|
// auto [inputSet, outputSet, inputTestSet, outputTestSet] = data.trainTestSplit(alg.transpose(inputSet1), alg.transpose(outputSet1), 0.2);
|
|
// alg.printMatrix(inputSet);
|
|
// alg.printMatrix(outputSet);
|
|
// alg.printMatrix(inputTestSet);
|
|
// alg.printMatrix(outputTestSet);
|
|
|
|
|
|
// alg.printMatrix(inputSet);
|
|
// alg.printMatrix(outputSet);
|
|
|
|
// MANN mann(inputSet, outputSet);
|
|
// mann.addLayer(100, "RELU", "XavierNormal");
|
|
// mann.addOutputLayer("Softmax", "CrossEntropy", "XavierNormal");
|
|
// mann.gradientDescent(0.1, 80000, 1);
|
|
// alg.printMatrix(mann.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl;
|
|
|
|
// // NAIVE BAYES
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}};
|
|
// std::vector<real_t> outputSet = {0,1,0,1,1};
|
|
|
|
// MultinomialNB MNB(alg.transpose(inputSet), outputSet, 2);
|
|
// alg.printVector(MNB.modelSetTest(alg.transpose(inputSet)));
|
|
|
|
// BernoulliNB BNB(alg.transpose(inputSet), outputSet);
|
|
// alg.printVector(BNB.modelSetTest(alg.transpose(inputSet)));
|
|
|
|
// GaussianNB GNB(alg.transpose(inputSet), outputSet, 2);
|
|
// alg.printVector(GNB.modelSetTest(alg.transpose(inputSet)));
|
|
|
|
// // KMeans
|
|
// std::vector<std::vector<real_t>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
|
// KMeans kmeans(inputSet, 3, "KMeans++");
|
|
// kmeans.train(3, 1);
|
|
// std::cout << std::endl;
|
|
// alg.printMatrix(kmeans.modelSetTest(inputSet)); // Returns the assigned centroids to each of the respective training examples
|
|
// std::cout << std::endl;
|
|
// alg.printVector(kmeans.silhouette_scores());
|
|
|
|
// // kNN
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
|
// std::vector<real_t> outputSet = {0,0,0,0,1,1,1,1};
|
|
// kNN knn(alg.transpose(inputSet), outputSet, 8);
|
|
// alg.printVector(knn.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl;
|
|
|
|
|
|
// // CONVOLUTION, POOLING, ETC..
|
|
// std::vector<std::vector<real_t>> input = {
|
|
// {1},
|
|
// };
|
|
|
|
// std::vector<std::vector<std::vector<real_t>>> tensorSet;
|
|
// tensorSet.push_back(input);
|
|
// tensorSet.push_back(input);
|
|
// tensorSet.push_back(input);
|
|
|
|
// alg.printTensor(data.rgb2xyz(tensorSet));
|
|
|
|
// std::vector<std::vector<real_t>> input = {
|
|
// {62,55,55,54,49,48,47,55},
|
|
// {62,57,54,52,48,47,48,53},
|
|
// {61,60,52,49,48,47,49,54},
|
|
// {63,61,60,60,63,65,68,65},
|
|
// {67,67,70,74,79,85,91,92},
|
|
// {82,95,101,106,114,115,112,117},
|
|
// {96,111,115,119,128,128,130,127},
|
|
// {109,121,127,133,139,141,140,133},
|
|
// };
|
|
|
|
// Transforms trans;
|
|
|
|
// alg.printMatrix(trans.discreteCosineTransform(input));
|
|
|
|
// alg.printMatrix(conv.convolve(input, conv.getPrewittVertical(), 1)); // Can use padding
|
|
// alg.printMatrix(conv.pool(input, 4, 4, "Max")); // Can use Max, Min, or Average pooling.
|
|
|
|
// std::vector<std::vector<std::vector<real_t>>> tensorSet;
|
|
// tensorSet.push_back(input);
|
|
// tensorSet.push_back(input);
|
|
// alg.printVector(conv.globalPool(tensorSet, "Average")); // Can use Max, Min, or Average global pooling.
|
|
|
|
// std::vector<std::vector<real_t>> laplacian = {{1, 1, 1}, {1, -4, 1}, {1, 1, 1}};
|
|
// alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1));
|
|
|
|
|
|
// // PCA, SVD, eigenvalues & eigenvectors
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,1}, {1,1}};
|
|
// auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet);
|
|
// std::cout << "Eigenvectors:" << std::endl;
|
|
// alg.printMatrix(Eigenvectors);
|
|
// std::cout << std::endl;
|
|
// std::cout << "Eigenvalues:" << std::endl;
|
|
// alg.printMatrix(Eigenvalues);
|
|
|
|
// auto [U, S, Vt] = alg.SVD(inputSet);
|
|
|
|
// // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors.
|
|
// PCA dr(inputSet, 1); // 1 dimensional representation.
|
|
// std::cout << std::endl;
|
|
// std::cout << "Dimensionally reduced representation:" << std::endl;
|
|
// alg.printMatrix(dr.principalComponents());
|
|
// std::cout << "SCORE: " << dr.score() << std::endl;
|
|
|
|
|
|
// // NLP/DATA
|
|
// std::string verbText = "I am appearing and thinking, as well as conducting.";
|
|
// std::cout << "Stemming Example:" << std::endl;
|
|
// std::cout << data.stemming(verbText) << std::endl;
|
|
// std::cout << std::endl;
|
|
|
|
// std::vector<std::string> sentences = {"He is a good boy", "She is a good girl", "The boy and girl are good"};
|
|
// std::cout << "Bag of Words Example:" << std::endl;
|
|
// alg.printMatrix(data.BOW(sentences, "Default"));
|
|
// std::cout << std::endl;
|
|
// std::cout << "TFIDF Example:" << std::endl;
|
|
// alg.printMatrix(data.TFIDF(sentences));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Tokenization:" << std::endl;
|
|
// alg.printVector(data.tokenize(verbText));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Word2Vec:" << std::endl;
|
|
// std::string textArchive = {"He is a good boy. She is a good girl. The boy and girl are good."};
|
|
// std::vector<std::string> corpus = data.splitSentences(textArchive);
|
|
// auto [wordEmbeddings, wordList] = data.word2Vec(corpus, "CBOW", 2, 2, 0.1, 10000); // Can use either CBOW or Skip-n-gram.
|
|
// alg.printMatrix(wordEmbeddings);
|
|
// std::cout << std::endl;
|
|
|
|
// std::vector<std::string> textArchive = {"pizza", "pizza hamburger cookie", "hamburger", "ramen", "sushi", "ramen sushi"};
|
|
|
|
// alg.printMatrix(data.LSA(textArchive, 2));
|
|
// //alg.printMatrix(data.BOW(textArchive, "Default"));
|
|
// std::cout << std::endl;
|
|
|
|
|
|
// std::vector<std::vector<real_t>> inputSet = {{1,2},{2,3},{3,4},{4,5},{5,6}};
|
|
// std::cout << "Feature Scaling Example:" << std::endl;
|
|
// alg.printMatrix(data.featureScaling(inputSet));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Mean Centering Example:" << std::endl;
|
|
// alg.printMatrix(data.meanCentering(inputSet));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Mean Normalization Example:" << std::endl;
|
|
// alg.printMatrix(data.meanNormalization(inputSet));
|
|
// std::cout << std::endl;
|
|
|
|
// // Outlier Finder
|
|
// std::vector<real_t> inputSet = {1,2,3,4,5,6,7,8,9,23554332523523};
|
|
// OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier.
|
|
// alg.printVector(outlierFinder.modelTest(inputSet));
|
|
|
|
// // Testing new Functions
|
|
// real_t z_s = 0.001;
|
|
// std::cout << avn.logit(z_s) << std::endl;
|
|
// std::cout << avn.logit(z_s, 1) << std::endl;
|
|
|
|
// std::vector<real_t> z_v = {0.001};
|
|
// alg.printVector(avn.logit(z_v));
|
|
// alg.printVector(avn.logit(z_v, 1));
|
|
|
|
// std::vector<std::vector<real_t>> Z_m = {{0.001}};
|
|
// alg.printMatrix(avn.logit(Z_m));
|
|
// alg.printMatrix(avn.logit(Z_m, 1));
|
|
|
|
// std::cout << alg.trace({{1,2}, {3,4}}) << std::endl;
|
|
// alg.printMatrix(alg.pinverse({{1,2}, {3,4}}));
|
|
// alg.printMatrix(alg.diag({1,2,3,4,5}));
|
|
// alg.printMatrix(alg.kronecker_product({{1,2,3,4,5}}, {{6,7,8,9,10}}));
|
|
// alg.printMatrix(alg.matrixPower({{5,5},{5,5}}, 2));
|
|
// alg.printVector(alg.solve({{1,1}, {1.5, 4.0}}, {2200, 5050}));
|
|
|
|
// std::vector<std::vector<real_t>> matrixOfCubes = {{1,2,64,27}};
|
|
// std::vector<real_t> vectorOfCubes = {1,2,64,27};
|
|
// alg.printMatrix(alg.cbrt(matrixOfCubes));
|
|
// alg.printVector(alg.cbrt(vectorOfCubes));
|
|
// std::cout << alg.max({{1,2,3,4,5}, {6,5,3,4,1}, {9,9,9,9,9}}) << std::endl;
|
|
// std::cout << alg.min({{1,2,3,4,5}, {6,5,3,4,1}, {9,9,9,9,9}}) << std::endl;
|
|
|
|
// std::vector<real_t> chicken;
|
|
// data.getImage("../../Data/apple.jpeg", chicken);
|
|
// alg.printVector(chicken);
|
|
|
|
// std::vector<std::vector<real_t>> P = {{12, -51, 4}, {6, 167, -68}, {-4, 24, -41}};
|
|
// alg.printMatrix(P);
|
|
|
|
// alg.printMatrix(alg.gramSchmidtProcess(P));
|
|
|
|
// auto [Q, R] = alg.QRD(P); // It works!
|
|
|
|
// alg.printMatrix(Q);
|
|
|
|
// alg.printMatrix(R);
|
|
|
|
// // Checking positive-definiteness checker. For Cholesky Decomp.
|
|
// std::vector<std::vector<real_t>> A =
|
|
// {
|
|
// {1,-1,-1,-1},
|
|
// {-1,2,2,2},
|
|
// {-1,2,3,1},
|
|
// {-1,2,1,4}
|
|
// };
|
|
|
|
// std::cout << std::boolalpha << alg.positiveDefiniteChecker(A) << std::endl;
|
|
// auto [L, Lt] = alg.chol(A); // works.
|
|
// alg.printMatrix(L);
|
|
// alg.printMatrix(Lt);
|
|
|
|
// Checks for numerical analysis class.
|
|
NumericalAnalysis numAn;
|
|
|
|
//std::cout << numAn.quadraticApproximation(f, 0, 1) << std::endl;
|
|
|
|
// std::cout << numAn.cubicApproximation(f, 0, 1.001) << std::endl;
|
|
|
|
// std::cout << f(1.001) << std::endl;
|
|
|
|
// std::cout << numAn.quadraticApproximation(f_mv, {0, 0, 0}, {1, 1, 1}) << std::endl;
|
|
|
|
// std::cout << numAn.numDiff(&f, 1) << std::endl;
|
|
// std::cout << numAn.newtonRaphsonMethod(&f, 1, 1000) << std::endl;
|
|
//std::cout << numAn.invQuadraticInterpolation(&f, {100, 2,1.5}, 10) << std::endl;
|
|
|
|
// std::cout << numAn.numDiff(&f_mv, {1, 1}, 1) << std::endl; // Derivative w.r.t. x.
|
|
|
|
// alg.printVector(numAn.jacobian(&f_mv, {1, 1}));
|
|
|
|
//std::cout << numAn.numDiff_2(&f, 2) << std::endl;
|
|
|
|
//std::cout << numAn.numDiff_3(&f, 2) << std::endl;
|
|
|
|
// std::cout << numAn.numDiff_2(&f_mv, {2, 2, 500}, 2, 2) << std::endl;
|
|
//std::cout << numAn.numDiff_3(&f_mv, {2, 1000, 130}, 0, 0, 0) << std::endl;
|
|
|
|
// alg.printTensor(numAn.thirdOrderTensor(&f_mv, {1, 1, 1}));
|
|
// std::cout << "Our Hessian." << std::endl;
|
|
// alg.printMatrix(numAn.hessian(&f_mv, {2, 2, 500}));
|
|
|
|
// std::cout << numAn.laplacian(f_mv, {1,1,1}) << std::endl;
|
|
|
|
// std::vector<std::vector<std::vector<real_t>>> tensor;
|
|
// tensor.push_back({{1,2}, {1,2}, {1,2}});
|
|
// tensor.push_back({{1,2}, {1,2}, {1,2}});
|
|
|
|
// alg.printTensor(tensor);
|
|
|
|
// alg.printMatrix(alg.tensor_vec_mult(tensor, {1,2}));
|
|
|
|
// std::cout << numAn.cubicApproximation(f_mv, {0, 0, 0}, {1, 1, 1}) << std::endl;
|
|
|
|
// std::cout << numAn.eulerianMethod(f_prime, {1, 1}, 1.5, 0.000001) << std::endl;
|
|
|
|
// std::cout << numAn.eulerianMethod(f_prime_2var, {2, 3}, 2.5, 0.00000001) << std::endl;
|
|
|
|
// alg.printMatrix(conv.dx(A));
|
|
// alg.printMatrix(conv.dy(A));
|
|
|
|
// alg.printMatrix(conv.gradOrientation(A));
|
|
|
|
// std::vector<std::vector<real_t>> A =
|
|
// {
|
|
// {1,0,0,0},
|
|
// {0,0,0,0},
|
|
// {0,0,0,0},
|
|
// {0,0,0,1}
|
|
// };
|
|
|
|
// std::vector<std::vector<std::string>> h = conv.harrisCornerDetection(A);
|
|
|
|
// for(int i = 0; i < h.size(); i++){
|
|
// for(int j = 0; j < h[i].size(); j++){
|
|
// std::cout << h[i][j] << " ";
|
|
// }
|
|
// std::cout << std::endl;
|
|
// } // Harris detector works. Life is good!
|
|
|
|
// std::vector<real_t> a = {3,4,4};
|
|
// std::vector<real_t> b = {4,4,4};
|
|
// alg.printVector(alg.cross(a,b));
|
|
|
|
//SUPPORT VECTOR CLASSIFICATION (kernel method)
|
|
// std::vector<std::vector<real_t>> inputSet;
|
|
// std::vector<real_t> outputSet;
|
|
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancerSVM.csv", inputSet, outputSet);
|
|
|
|
// std::vector<std::vector<real_t>> inputSet;
|
|
// std::vector<real_t> outputSet;
|
|
// data.setData(4, "/Users/marcmelikyan/Desktop/Data/IrisSVM.csv", inputSet, outputSet);
|
|
|
|
// DualSVC kernelSVM(inputSet, outputSet, 1000);
|
|
// kernelSVM.gradientDescent(0.0001, 20, 1);
|
|
|
|
// std::vector<std::vector<real_t>> linearlyIndependentMat =
|
|
|
|
// {
|
|
// {1,2,3,4},
|
|
// {234538495,4444,6111,55}
|
|
// };
|
|
|
|
// std::cout << "True of false: linearly independent?: " << std::boolalpha << alg.linearIndependenceChecker(linearlyIndependentMat) << std::endl;
|
|
|
|
|
|
return 0;
|
|
}
|
|
|