mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-13 13:57:19 +01:00
195 lines
6.4 KiB
C++
195 lines
6.4 KiB
C++
//
|
|
// SVC.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "SVC.hpp"
|
|
#include "Activation/Activation.hpp"
|
|
#include "LinAlg/LinAlg.hpp"
|
|
#include "Regularization/Reg.hpp"
|
|
#include "Utilities/Utilities.hpp"
|
|
#include "Cost/Cost.hpp"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
namespace MLPP{
|
|
SVC::SVC(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, double C)
|
|
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C)
|
|
{
|
|
y_hat.resize(n);
|
|
weights = Utilities::weightInitialization(k);
|
|
bias = Utilities::biasInitialization();
|
|
}
|
|
|
|
std::vector<double> SVC::modelSetTest(std::vector<std::vector<double>> X){
|
|
return Evaluate(X);
|
|
}
|
|
|
|
double SVC::modelTest(std::vector<double> x){
|
|
return Evaluate(x);
|
|
}
|
|
|
|
void SVC::gradientDescent(double learning_rate, int max_epoch, bool UI){
|
|
class Cost cost;
|
|
Activation avn;
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while(true){
|
|
cost_prev = Cost(y_hat, outputSet, weights, C);
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), cost.HingeLossDeriv(z, outputSet, C))));
|
|
weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge");
|
|
|
|
// Calculating the bias gradients
|
|
bias += learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputSet, C)) / n;
|
|
|
|
forwardPass();
|
|
|
|
// UI PORTION
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet, weights, C));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
|
|
}
|
|
}
|
|
|
|
void SVC::SGD(double learning_rate, int max_epoch, bool UI){
|
|
class Cost cost;
|
|
Activation avn;
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
while(true){
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
int outputIndex = distribution(generator);
|
|
|
|
double y_hat = Evaluate(inputSet[outputIndex]);
|
|
double z = propagate(inputSet[outputIndex]);
|
|
cost_prev = Cost({z}, {outputSet[outputIndex]}, weights, C);
|
|
|
|
double costDeriv = cost.HingeLossDeriv(std::vector<double>({z}), std::vector<double>({outputSet[outputIndex]}), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu.
|
|
|
|
// Weight Updation
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * costDeriv, inputSet[outputIndex]));
|
|
weights = regularization.regWeights(weights, learning_rate, 0, "Ridge");
|
|
|
|
// Bias updation
|
|
bias -= learning_rate * costDeriv;
|
|
|
|
y_hat = Evaluate({inputSet[outputIndex]});
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost({z}, {outputSet[outputIndex]}, weights, C));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
void SVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
|
|
class Cost cost;
|
|
Activation avn;
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = n/mini_batch_size;
|
|
auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
|
|
while(true){
|
|
for(int i = 0; i < n_mini_batch; i++){
|
|
std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
|
|
std::vector<double> z = propagate(inputMiniBatches[i]);
|
|
cost_prev = Cost(z, outputMiniBatches[i], weights, C);
|
|
|
|
// Calculating the weight gradients
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C))));
|
|
weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge");
|
|
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n;
|
|
|
|
forwardPass();
|
|
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
}
|
|
epoch++;
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
double SVC::score(){
|
|
Utilities util;
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void SVC::save(std::string fileName){
|
|
Utilities util;
|
|
util.saveParameters(fileName, weights, bias);
|
|
}
|
|
|
|
double SVC::Cost(std::vector <double> z, std::vector<double> y, std::vector<double> weights, double C){
|
|
class Cost cost;
|
|
return cost.HingeLoss(z, y, weights, C);
|
|
}
|
|
|
|
std::vector<double> SVC::Evaluate(std::vector<std::vector<double>> X){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
|
}
|
|
|
|
std::vector<double>SVC::propagate(std::vector<std::vector<double>> X){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
|
}
|
|
|
|
double SVC::Evaluate(std::vector<double> x){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
return avn.sign(alg.dot(weights, x) + bias);
|
|
}
|
|
|
|
double SVC::propagate(std::vector<double> x){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
return alg.dot(weights, x) + bias;
|
|
}
|
|
|
|
// sign ( wTx + b )
|
|
void SVC::forwardPass(){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
|
|
z = propagate(inputSet);
|
|
y_hat = avn.sign(z);
|
|
}
|
|
} |