pmlpp/mlpp/regularization/reg.cpp

178 lines
6.1 KiB
C++

//
// Reg.cpp
//
// Created by Marc Melikyan on 1/16/21.
//
#include <iostream>
#include <random>
#include "Reg.hpp"
#include "LinAlg/LinAlg.hpp"
#include "Activation/Activation.hpp"
namespace MLPP{
double Reg::regTerm(std::vector<double> weights, double lambda, double alpha, std::string reg){
if(reg == "Ridge"){
double reg = 0;
for(int i = 0; i < weights.size(); i++){
reg += weights[i] * weights[i];
}
return reg * lambda / 2;
}
else if(reg == "Lasso"){
double reg = 0;
for(int i = 0; i < weights.size(); i++){
reg += abs(weights[i]);
}
return reg * lambda;
}
else if(reg == "ElasticNet"){
double reg = 0;
for(int i = 0; i < weights.size(); i++){
reg += alpha * abs(weights[i]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
double Reg::regTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg){
if(reg == "Ridge"){
double reg = 0;
for(int i = 0; i < weights.size(); i++){
for(int j = 0; j < weights[i].size(); j++){
reg += weights[i][j] * weights[i][j];
}
}
return reg * lambda / 2;
}
else if(reg == "Lasso"){
double reg = 0;
for(int i = 0; i < weights.size(); i++){
for(int j = 0; j < weights[i].size(); j++){
reg += abs(weights[i][j]);
}
}
return reg * lambda;
}
else if(reg == "ElasticNet"){
double reg = 0;
for(int i = 0; i < weights.size(); i++){
for(int j = 0; j < weights[i].size(); j++){
reg += alpha * abs(weights[i][j]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
}
}
return reg * lambda;
}
return 0;
}
std::vector<double> Reg::regWeights(std::vector<double> weights, double lambda, double alpha, std::string reg){
LinAlg alg;
if(reg == "WeightClipping"){ return regDerivTerm(weights, lambda, alpha, reg); }
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
// }
// return weights;
}
std::vector<std::vector<double>> Reg::regWeights(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg){
LinAlg alg;
if(reg == "WeightClipping"){ return regDerivTerm(weights, lambda, alpha, reg); }
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// for(int j = 0; j < weights[i].size(); j++){
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
// }
// }
// return weights;
}
std::vector<double> Reg::regDerivTerm(std::vector<double> weights, double lambda, double alpha, std::string reg){
std::vector<double> regDeriv;
regDeriv.resize(weights.size());
for(int i = 0; i < regDeriv.size(); i++){
regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i);
}
return regDeriv;
}
std::vector<std::vector<double>> Reg::regDerivTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg){
std::vector<std::vector<double>> regDeriv;
regDeriv.resize(weights.size());
for(int i = 0; i < regDeriv.size(); i++){
regDeriv[i].resize(weights[0].size());
}
for(int i = 0; i < regDeriv.size(); i++){
for(int j = 0; j < regDeriv[i].size(); j++){
regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j);
}
}
return regDeriv;
}
double Reg::regDerivTerm(std::vector<double> weights, double lambda, double alpha, std::string reg, int j){
Activation act;
if(reg == "Ridge"){
return lambda * weights[j];
}
else if(reg == "Lasso"){
return lambda * act.sign(weights[j]);
}
else if(reg == "ElasticNet"){
return alpha * lambda * act.sign(weights[j]) + (1 - alpha) * lambda * weights[j];
}
else if(reg == "WeightClipping"){ // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if(weights[j] > alpha){
return alpha;
}
else if(weights[j] < lambda){
return lambda;
}
else{
return weights[j];
}
}
else {
return 0;
}
}
double Reg::regDerivTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg, int i, int j){
Activation act;
if(reg == "Ridge"){
return lambda * weights[i][j];
}
else if(reg == "Lasso"){
return lambda * act.sign(weights[i][j]);
}
else if(reg == "ElasticNet"){
return alpha * lambda * act.sign(weights[i][j]) + (1 - alpha) * lambda * weights[i][j];
}
else if(reg == "WeightClipping"){ // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if(weights[i][j] > alpha){
return alpha;
}
else if(weights[i][j] < lambda){
return lambda;
}
else{
return weights[i][j];
}
}
else {
return 0;
}
}
}