mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-03 16:39:40 +01:00
381 lines
13 KiB
C++
381 lines
13 KiB
C++
//
|
|
// Convolutions.cpp
|
|
//
|
|
// Created by Marc Melikyan on 4/6/21.
|
|
//
|
|
|
|
#include "../convolutions/convolutions.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../stat/stat.h"
|
|
#include <cmath>
|
|
#include <iostream>
|
|
|
|
/*
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::convolve_2d(std::vector<std::vector<real_t>> input, std::vector<std::vector<real_t>> filter, int S, int P) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> feature_map;
|
|
uint32_t N = input.size();
|
|
uint32_t F = filter.size();
|
|
uint32_t map_size = (N - F + 2 * P) / S + 1; // This is computed as ⌊map_size⌋ by def- thanks C++!
|
|
|
|
if (P != 0) {
|
|
std::vector<std::vector<real_t>> padded_input;
|
|
padded_input.resize(N + 2 * P);
|
|
for (uint32_t i = 0; i < padded_input.size(); i++) {
|
|
padded_input[i].resize(N + 2 * P);
|
|
}
|
|
for (uint32_t i = 0; i < padded_input.size(); i++) {
|
|
for (uint32_t j = 0; j < padded_input[i].size(); j++) {
|
|
if (i - P < 0 || j - P < 0 || i - P > input.size() - 1 || j - P > input[0].size() - 1) {
|
|
padded_input[i][j] = 0;
|
|
} else {
|
|
padded_input[i][j] = input[i - P][j - P];
|
|
}
|
|
}
|
|
}
|
|
input.resize(padded_input.size());
|
|
for (uint32_t i = 0; i < padded_input.size(); i++) {
|
|
input[i].resize(padded_input[i].size());
|
|
}
|
|
input = padded_input;
|
|
}
|
|
|
|
feature_map.resize(map_size);
|
|
for (uint32_t i = 0; i < map_size; i++) {
|
|
feature_map[i].resize(map_size);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < map_size; i++) {
|
|
for (uint32_t j = 0; j < map_size; j++) {
|
|
std::vector<real_t> convolving_input;
|
|
for (uint32_t k = 0; k < F; k++) {
|
|
for (uint32_t p = 0; p < F; p++) {
|
|
if (i == 0 && j == 0) {
|
|
convolving_input.push_back(input[i + k][j + p]);
|
|
} else if (i == 0) {
|
|
convolving_input.push_back(input[i + k][j + (S - 1) + p]);
|
|
} else if (j == 0) {
|
|
convolving_input.push_back(input[i + (S - 1) + k][j + p]);
|
|
} else {
|
|
convolving_input.push_back(input[i + (S - 1) + k][j + (S - 1) + p]);
|
|
}
|
|
}
|
|
}
|
|
feature_map[i][j] = alg.dot(convolving_input, alg.flatten(filter));
|
|
}
|
|
}
|
|
return feature_map;
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<real_t>>> MLPPConvolutions::convolve_3d(std::vector<std::vector<std::vector<real_t>>> input, std::vector<std::vector<std::vector<real_t>>> filter, int S, int P) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<std::vector<real_t>>> feature_map;
|
|
uint32_t N = input[0].size();
|
|
uint32_t F = filter[0].size();
|
|
uint32_t C = filter.size() / input.size();
|
|
uint32_t map_size = (N - F + 2 * P) / S + 1; // This is computed as ⌊map_size⌋ by def.
|
|
|
|
if (P != 0) {
|
|
for (uint32_t c = 0; c < input.size(); c++) {
|
|
std::vector<std::vector<real_t>> padded_input;
|
|
padded_input.resize(N + 2 * P);
|
|
for (uint32_t i = 0; i < padded_input.size(); i++) {
|
|
padded_input[i].resize(N + 2 * P);
|
|
}
|
|
for (uint32_t i = 0; i < padded_input.size(); i++) {
|
|
for (uint32_t j = 0; j < padded_input[i].size(); j++) {
|
|
if (i - P < 0 || j - P < 0 || i - P > input[c].size() - 1 || j - P > input[c][0].size() - 1) {
|
|
padded_input[i][j] = 0;
|
|
} else {
|
|
padded_input[i][j] = input[c][i - P][j - P];
|
|
}
|
|
}
|
|
}
|
|
input[c].resize(padded_input.size());
|
|
for (uint32_t i = 0; i < padded_input.size(); i++) {
|
|
input[c][i].resize(padded_input[i].size());
|
|
}
|
|
input[c] = padded_input;
|
|
}
|
|
}
|
|
|
|
feature_map.resize(C);
|
|
for (uint32_t i = 0; i < feature_map.size(); i++) {
|
|
feature_map[i].resize(map_size);
|
|
for (uint32_t j = 0; j < feature_map[i].size(); j++) {
|
|
feature_map[i][j].resize(map_size);
|
|
}
|
|
}
|
|
|
|
for (uint32_t c = 0; c < C; c++) {
|
|
for (uint32_t i = 0; i < map_size; i++) {
|
|
for (uint32_t j = 0; j < map_size; j++) {
|
|
std::vector<real_t> convolving_input;
|
|
for (uint32_t t = 0; t < input.size(); t++) {
|
|
for (uint32_t k = 0; k < F; k++) {
|
|
for (uint32_t p = 0; p < F; p++) {
|
|
if (i == 0 && j == 0) {
|
|
convolving_input.push_back(input[t][i + k][j + p]);
|
|
} else if (i == 0) {
|
|
convolving_input.push_back(input[t][i + k][j + (S - 1) + p]);
|
|
} else if (j == 0) {
|
|
convolving_input.push_back(input[t][i + (S - 1) + k][j + p]);
|
|
} else {
|
|
convolving_input.push_back(input[t][i + (S - 1) + k][j + (S - 1) + p]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
feature_map[c][i][j] = alg.dot(convolving_input, alg.flatten(filter));
|
|
}
|
|
}
|
|
}
|
|
return feature_map;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::pool_2d(std::vector<std::vector<real_t>> input, int F, int S, std::string type) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> pooled_map;
|
|
uint32_t N = input.size();
|
|
uint32_t map_size = floor((N - F) / S + 1);
|
|
|
|
pooled_map.resize(map_size);
|
|
for (uint32_t i = 0; i < map_size; i++) {
|
|
pooled_map[i].resize(map_size);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < map_size; i++) {
|
|
for (uint32_t j = 0; j < map_size; j++) {
|
|
std::vector<real_t> pooling_input;
|
|
for (int k = 0; k < F; k++) {
|
|
for (int p = 0; p < F; p++) {
|
|
if (i == 0 && j == 0) {
|
|
pooling_input.push_back(input[i + k][j + p]);
|
|
} else if (i == 0) {
|
|
pooling_input.push_back(input[i + k][j + (S - 1) + p]);
|
|
} else if (j == 0) {
|
|
pooling_input.push_back(input[i + (S - 1) + k][j + p]);
|
|
} else {
|
|
pooling_input.push_back(input[i + (S - 1) + k][j + (S - 1) + p]);
|
|
}
|
|
}
|
|
}
|
|
if (type == "Average") {
|
|
MLPPStat stat;
|
|
pooled_map[i][j] = stat.mean(pooling_input);
|
|
} else if (type == "Min") {
|
|
pooled_map[i][j] = alg.min(pooling_input);
|
|
} else {
|
|
pooled_map[i][j] = alg.max(pooling_input);
|
|
}
|
|
}
|
|
}
|
|
return pooled_map;
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<real_t>>> MLPPConvolutions::pool_3d(std::vector<std::vector<std::vector<real_t>>> input, int F, int S, std::string type) {
|
|
std::vector<std::vector<std::vector<real_t>>> pooled_map;
|
|
for (uint32_t i = 0; i < input.size(); i++) {
|
|
pooled_map.push_back(pool_2d(input[i], F, S, type));
|
|
}
|
|
return pooled_map;
|
|
}
|
|
|
|
real_t MLPPConvolutions::global_pool_2d(std::vector<std::vector<real_t>> input, std::string type) {
|
|
MLPPLinAlg alg;
|
|
if (type == "Average") {
|
|
MLPPStat stat;
|
|
return stat.mean(alg.flatten(input));
|
|
} else if (type == "Min") {
|
|
return alg.min(alg.flatten(input));
|
|
} else {
|
|
return alg.max(alg.flatten(input));
|
|
}
|
|
}
|
|
|
|
std::vector<real_t> MLPPConvolutions::global_pool_3d(std::vector<std::vector<std::vector<real_t>>> input, std::string type) {
|
|
std::vector<real_t> pooled_map;
|
|
for (uint32_t i = 0; i < input.size(); i++) {
|
|
pooled_map.push_back(global_pool_2d(input[i], type));
|
|
}
|
|
return pooled_map;
|
|
}
|
|
|
|
real_t MLPPConvolutions::gaussian_2d(real_t x, real_t y, real_t std) {
|
|
real_t std_sq = std * std;
|
|
return 1 / (2 * Math_PI * std_sq) * std::exp(-(x * x + y * y) / 2 * std_sq);
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::gaussian_filter_2d(int size, real_t std) {
|
|
std::vector<std::vector<real_t>> filter;
|
|
filter.resize(size);
|
|
for (uint32_t i = 0; i < filter.size(); i++) {
|
|
filter[i].resize(size);
|
|
}
|
|
for (int i = 0; i < size; i++) {
|
|
for (int j = 0; j < size; j++) {
|
|
filter[i][j] = gaussian_2d(i - (size - 1) / 2, (size - 1) / 2 - j, std);
|
|
}
|
|
}
|
|
return filter;
|
|
}
|
|
|
|
|
|
// Indeed a filter could have been used for this purpose, but I decided that it would've just
|
|
// been easier to carry out the calculation explicitly, mainly because it is more informative,
|
|
// and also because my convolution algorithm is only built for filters with equally sized
|
|
// heights and widths.
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::dx(std::vector<std::vector<real_t>> input) {
|
|
std::vector<std::vector<real_t>> deriv; // We assume a gray scale image.
|
|
deriv.resize(input.size());
|
|
for (uint32_t i = 0; i < deriv.size(); i++) {
|
|
deriv[i].resize(input[i].size());
|
|
}
|
|
|
|
for (uint32_t i = 0; i < input.size(); i++) {
|
|
for (uint32_t j = 0; j < input[i].size(); j++) {
|
|
if (j != 0 && j != input.size() - 1) {
|
|
deriv[i][j] = input[i][j + 1] - input[i][j - 1];
|
|
} else if (j == 0) {
|
|
deriv[i][j] = input[i][j + 1] - 0; // Implicit zero-padding
|
|
} else {
|
|
deriv[i][j] = 0 - input[i][j - 1]; // Implicit zero-padding
|
|
}
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::dy(std::vector<std::vector<real_t>> input) {
|
|
std::vector<std::vector<real_t>> deriv;
|
|
deriv.resize(input.size());
|
|
for (uint32_t i = 0; i < deriv.size(); i++) {
|
|
deriv[i].resize(input[i].size());
|
|
}
|
|
|
|
for (uint32_t i = 0; i < input.size(); i++) {
|
|
for (uint32_t j = 0; j < input[i].size(); j++) {
|
|
if (i != 0 && i != input.size() - 1) {
|
|
deriv[i][j] = input[i - 1][j] - input[i + 1][j];
|
|
} else if (i == 0) {
|
|
deriv[i][j] = 0 - input[i + 1][j]; // Implicit zero-padding
|
|
} else {
|
|
deriv[i][j] = input[i - 1][j] - 0; // Implicit zero-padding
|
|
}
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::grad_magnitude(std::vector<std::vector<real_t>> input) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> x_deriv_2 = alg.hadamard_product(dx(input), dx(input));
|
|
std::vector<std::vector<real_t>> y_deriv_2 = alg.hadamard_product(dy(input), dy(input));
|
|
return alg.sqrt(alg.addition(x_deriv_2, y_deriv_2));
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::grad_orientation(std::vector<std::vector<real_t>> input) {
|
|
std::vector<std::vector<real_t>> deriv;
|
|
deriv.resize(input.size());
|
|
for (uint32_t i = 0; i < deriv.size(); i++) {
|
|
deriv[i].resize(input[i].size());
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> x_deriv = dx(input);
|
|
std::vector<std::vector<real_t>> y_deriv = dy(input);
|
|
for (uint32_t i = 0; i < deriv.size(); i++) {
|
|
for (uint32_t j = 0; j < deriv[i].size(); j++) {
|
|
deriv[i][j] = std::atan2(y_deriv[i][j], x_deriv[i][j]);
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<real_t>>> MLPPConvolutions::compute_m(std::vector<std::vector<real_t>> input) {
|
|
real_t const SIGMA = 1;
|
|
real_t const GAUSSIAN_SIZE = 3;
|
|
|
|
real_t const GAUSSIAN_PADDING = ((input.size() - 1) + GAUSSIAN_SIZE - input.size()) / 2; // Convs must be same.
|
|
std::cout << GAUSSIAN_PADDING << std::endl;
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> x_deriv = dx(input);
|
|
std::vector<std::vector<real_t>> y_deriv = dy(input);
|
|
|
|
std::vector<std::vector<real_t>> gaussian_filter = gaussian_filter_2d(GAUSSIAN_SIZE, SIGMA); // Sigma of 1, size of 3.
|
|
std::vector<std::vector<real_t>> xx_deriv = convolve_2d(alg.hadamard_product(x_deriv, x_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
std::vector<std::vector<real_t>> yy_deriv = convolve_2d(alg.hadamard_product(y_deriv, y_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
std::vector<std::vector<real_t>> xy_deriv = convolve_2d(alg.hadamard_product(x_deriv, y_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
|
|
std::vector<std::vector<std::vector<real_t>>> M = { xx_deriv, yy_deriv, xy_deriv };
|
|
return M;
|
|
}
|
|
std::vector<std::vector<std::string>> MLPPConvolutions::harris_corner_detection(std::vector<std::vector<real_t>> input) {
|
|
real_t const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well.
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<std::vector<real_t>>> M = compute_m(input);
|
|
std::vector<std::vector<real_t>> det = alg.subtraction(alg.hadamard_product(M[0], M[1]), alg.hadamard_product(M[2], M[2]));
|
|
std::vector<std::vector<real_t>> trace = alg.addition(M[0], M[1]);
|
|
|
|
// The reason this is not a scalar is because xx_deriv, xy_deriv, yx_deriv, and yy_deriv are not scalars.
|
|
std::vector<std::vector<real_t>> r = alg.subtraction(det, alg.scalarMultiply(k, alg.hadamard_product(trace, trace)));
|
|
std::vector<std::vector<std::string>> imageTypes;
|
|
imageTypes.resize(r.size());
|
|
alg.printMatrix(r);
|
|
for (uint32_t i = 0; i < r.size(); i++) {
|
|
imageTypes[i].resize(r[i].size());
|
|
for (uint32_t j = 0; j < r[i].size(); j++) {
|
|
if (r[i][j] > 0) {
|
|
imageTypes[i][j] = "C";
|
|
} else if (r[i][j] < 0) {
|
|
imageTypes[i][j] = "E";
|
|
} else {
|
|
imageTypes[i][j] = "N";
|
|
}
|
|
}
|
|
}
|
|
return imageTypes;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_prewitt_horizontal() {
|
|
return _prewitt_horizontal;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_prewitt_vertical() {
|
|
return _prewitt_vertical;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_sobel_horizontal() {
|
|
return _sobel_horizontal;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_sobel_vertical() {
|
|
return _sobel_vertical;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_scharr_horizontal() {
|
|
return _scharr_horizontal;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_scharr_vertical() {
|
|
return _scharr_vertical;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_roberts_horizontal() {
|
|
return _roberts_horizontal;
|
|
}
|
|
std::vector<std::vector<real_t>> MLPPConvolutions::get_roberts_vertical() {
|
|
return _roberts_vertical;
|
|
}
|
|
*/
|
|
|
|
MLPPConvolutions::MLPPConvolutions() {
|
|
/*
|
|
_prewitt_horizontal = { { 1, 1, 1 }, { 0, 0, 0 }, { -1, -1, -1 } };
|
|
_prewitt_vertical = { { 1, 0, -1 }, { 1, 0, -1 }, { 1, 0, -1 } };
|
|
_sobel_horizontal = { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } };
|
|
_sobel_vertical = { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } };
|
|
_scharr_horizontal = { { 3, 10, 3 }, { 0, 0, 0 }, { -3, -10, -3 } };
|
|
_scharr_vertical = { { 3, 0, -3 }, { 10, 0, -10 }, { 3, 0, -3 } };
|
|
_roberts_horizontal = { { 0, 1 }, { -1, 0 } };
|
|
_roberts_vertical = { { 1, 0 }, { 0, -1 } };
|
|
*/
|
|
}
|
|
|
|
void MLPPConvolutions::_bind_methods() {
|
|
}
|