pmlpp/mlpp/lin_alg/mlpp_tensor3.cpp

138 lines
4.3 KiB
C++

#include "mlpp_tensor3.h"
String MLPPTensor3::to_string() {
String str;
str += "[MLPPTensor3: \n";
for (int y = 0; y < _size.y; ++y) {
str += " [ ";
for (int x = 0; x < _size.x; ++x) {
str += String::num(_data[_size.x * y + x]);
str += " ";
}
str += "]\n";
}
str += "]";
return str;
}
std::vector<real_t> MLPPTensor3::to_flat_std_vector() const {
std::vector<real_t> ret;
ret.resize(data_size());
real_t *w = &ret[0];
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
void MLPPTensor3::set_from_std_vectors(const std::vector<std::vector<real_t>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
resize(Size2i(p_from[0].size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (uint32_t i = 0; i < p_from.size(); ++i) {
const std::vector<real_t> &r = p_from[i];
ERR_CONTINUE(r.size() != static_cast<uint32_t>(_size.x));
int start_index = i * _size.x;
const real_t *from_ptr = &r[0];
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
std::vector<std::vector<real_t>> MLPPTensor3::to_std_vector() {
std::vector<std::vector<real_t>> ret;
ret.resize(_size.y);
for (int i = 0; i < _size.y; ++i) {
std::vector<real_t> row;
for (int j = 0; j < _size.x; ++j) {
row.push_back(_data[calculate_index(i, j)]);
}
ret[i] = row;
}
return ret;
}
void MLPPTensor3::set_row_std_vector(int p_index_y, const std::vector<real_t> &p_row) {
ERR_FAIL_COND(p_row.size() != static_cast<uint32_t>(_size.x));
ERR_FAIL_INDEX(p_index_y, _size.y);
int ind_start = p_index_y * _size.x;
const real_t *row_ptr = &p_row[0];
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
MLPPTensor3::MLPPTensor3(const std::vector<std::vector<real_t>> &p_from) {
_data = NULL;
set_from_std_vectors(p_from);
}
void MLPPTensor3::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_row", "row"), &MLPPTensor3::add_row_pool_vector);
ClassDB::bind_method(D_METHOD("add_row_mlpp_vector", "row"), &MLPPTensor3::add_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("add_rows_mlpp_matrix", "other"), &MLPPTensor3::add_rows_mlpp_matrix);
ClassDB::bind_method(D_METHOD("remove_row", "index"), &MLPPTensor3::remove_row);
ClassDB::bind_method(D_METHOD("remove_row_unordered", "index"), &MLPPTensor3::remove_row_unordered);
ClassDB::bind_method(D_METHOD("swap_row", "index_1", "index_2"), &MLPPTensor3::swap_row);
ClassDB::bind_method(D_METHOD("clear"), &MLPPTensor3::clear);
ClassDB::bind_method(D_METHOD("reset"), &MLPPTensor3::reset);
ClassDB::bind_method(D_METHOD("empty"), &MLPPTensor3::empty);
ClassDB::bind_method(D_METHOD("data_size"), &MLPPTensor3::data_size);
ClassDB::bind_method(D_METHOD("size"), &MLPPTensor3::size);
ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPTensor3::resize);
ClassDB::bind_method(D_METHOD("get_element", "index_x", "index_y"), &MLPPTensor3::get_element_bind);
ClassDB::bind_method(D_METHOD("set_element", "index_x", "index_y", "val"), &MLPPTensor3::set_element_bind);
ClassDB::bind_method(D_METHOD("get_row_pool_vector", "index_y"), &MLPPTensor3::get_row_pool_vector);
ClassDB::bind_method(D_METHOD("get_row_mlpp_vector", "index_y"), &MLPPTensor3::get_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("get_row_into_mlpp_vector", "index_y", "target"), &MLPPTensor3::get_row_into_mlpp_vector);
ClassDB::bind_method(D_METHOD("set_row_pool_vector", "index_y", "row"), &MLPPTensor3::set_row_pool_vector);
ClassDB::bind_method(D_METHOD("set_row_mlpp_vector", "index_y", "row"), &MLPPTensor3::set_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPTensor3::fill);
ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPTensor3::to_flat_pool_vector);
ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPTensor3::to_flat_byte_array);
ClassDB::bind_method(D_METHOD("duplicate"), &MLPPTensor3::duplicate);
ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPTensor3::set_from_mlpp_vectors_array);
ClassDB::bind_method(D_METHOD("set_from_arrays", "from"), &MLPPTensor3::set_from_arrays);
ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPTensor3::set_from_mlpp_matrix);
ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPTensor3::is_equal_approx, CMP_EPSILON);
}