mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-10 17:49:36 +01:00
238 lines
6.4 KiB
C++
238 lines
6.4 KiB
C++
//
|
|
// ExpReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "exp_reg.h"
|
|
#include "../cost/cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../stat/stat.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
|
|
MLPPExpReg::MLPPExpReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
|
|
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
|
|
y_hat.resize(n);
|
|
weights = MLPPUtilities::weightInitialization(k);
|
|
initial = MLPPUtilities::weightInitialization(k);
|
|
bias = MLPPUtilities::biasInitialization();
|
|
}
|
|
|
|
std::vector<real_t> MLPPExpReg::modelSetTest(std::vector<std::vector<real_t>> X) {
|
|
return Evaluate(X);
|
|
}
|
|
|
|
real_t MLPPExpReg::modelTest(std::vector<real_t> x) {
|
|
return Evaluate(x);
|
|
}
|
|
|
|
void MLPPExpReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while (true) {
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
for (int i = 0; i < k; i++) {
|
|
// Calculating the weight gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < n; j++) {
|
|
sum += error[j] * inputSet[j][i] * std::pow(weights[i], inputSet[j][i] - 1);
|
|
}
|
|
real_t w_gradient = sum / n;
|
|
|
|
// Calculating the initial gradient
|
|
real_t sum2 = 0;
|
|
for (int j = 0; j < n; j++) {
|
|
sum2 += error[j] * std::pow(weights[i], inputSet[j][i]);
|
|
}
|
|
|
|
real_t i_gradient = sum2 / n;
|
|
|
|
// Weight/initial updation
|
|
weights[i] -= learning_rate * w_gradient;
|
|
initial[i] -= learning_rate * i_gradient;
|
|
}
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Calculating the bias gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < n; j++) {
|
|
sum += (y_hat[j] - outputSet[j]);
|
|
}
|
|
real_t b_gradient = sum / n;
|
|
|
|
// bias updation
|
|
bias -= learning_rate * b_gradient;
|
|
forwardPass();
|
|
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
MLPPUtilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPExpReg::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
while (true) {
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
int outputIndex = distribution(generator);
|
|
|
|
real_t y_hat = Evaluate(inputSet[outputIndex]);
|
|
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
|
|
|
|
for (int i = 0; i < k; i++) {
|
|
// Calculating the weight gradients
|
|
|
|
real_t w_gradient = (y_hat - outputSet[outputIndex]) * inputSet[outputIndex][i] * std::pow(weights[i], inputSet[outputIndex][i] - 1);
|
|
real_t i_gradient = (y_hat - outputSet[outputIndex]) * std::pow(weights[i], inputSet[outputIndex][i]);
|
|
|
|
// Weight/initial updation
|
|
weights[i] -= learning_rate * w_gradient;
|
|
initial[i] -= learning_rate * i_gradient;
|
|
}
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Calculating the bias gradients
|
|
real_t b_gradient = (y_hat - outputSet[outputIndex]);
|
|
|
|
// Bias updation
|
|
bias -= learning_rate * b_gradient;
|
|
y_hat = Evaluate({ inputSet[outputIndex] });
|
|
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
|
|
MLPPUtilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
void MLPPExpReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = n / mini_batch_size;
|
|
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
|
|
while (true) {
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
|
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
for (int j = 0; j < k; j++) {
|
|
// Calculating the weight gradient
|
|
real_t sum = 0;
|
|
for (int k = 0; k < outputMiniBatches[i].size(); k++) {
|
|
sum += error[k] * inputMiniBatches[i][k][j] * std::pow(weights[j], inputMiniBatches[i][k][j] - 1);
|
|
}
|
|
real_t w_gradient = sum / outputMiniBatches[i].size();
|
|
|
|
// Calculating the initial gradient
|
|
real_t sum2 = 0;
|
|
for (int k = 0; k < outputMiniBatches[i].size(); k++) {
|
|
sum2 += error[k] * std::pow(weights[j], inputMiniBatches[i][k][j]);
|
|
}
|
|
|
|
real_t i_gradient = sum2 / outputMiniBatches[i].size();
|
|
|
|
// Weight/initial updation
|
|
weights[j] -= learning_rate * w_gradient;
|
|
initial[j] -= learning_rate * i_gradient;
|
|
}
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Calculating the bias gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < outputMiniBatches[i].size(); j++) {
|
|
sum += (y_hat[j] - outputMiniBatches[i][j]);
|
|
}
|
|
real_t b_gradient = sum / outputMiniBatches[i].size();
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
|
MLPPUtilities::UI(weights, bias);
|
|
}
|
|
}
|
|
epoch++;
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
real_t MLPPExpReg::score() {
|
|
MLPPUtilities util;
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void MLPPExpReg::save(std::string fileName) {
|
|
MLPPUtilities util;
|
|
util.saveParameters(fileName, weights, initial, bias);
|
|
}
|
|
|
|
real_t MLPPExpReg::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
|
MLPPReg regularization;
|
|
class MLPPCost cost;
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
|
}
|
|
|
|
std::vector<real_t> MLPPExpReg::Evaluate(std::vector<std::vector<real_t>> X) {
|
|
std::vector<real_t> y_hat;
|
|
y_hat.resize(X.size());
|
|
for (int i = 0; i < X.size(); i++) {
|
|
y_hat[i] = 0;
|
|
for (int j = 0; j < X[i].size(); j++) {
|
|
y_hat[i] += initial[j] * std::pow(weights[j], X[i][j]);
|
|
}
|
|
y_hat[i] += bias;
|
|
}
|
|
return y_hat;
|
|
}
|
|
|
|
real_t MLPPExpReg::Evaluate(std::vector<real_t> x) {
|
|
real_t y_hat = 0;
|
|
for (int i = 0; i < x.size(); i++) {
|
|
y_hat += initial[i] * std::pow(weights[i], x[i]);
|
|
}
|
|
|
|
return y_hat + bias;
|
|
}
|
|
|
|
// a * w^x + b
|
|
void MLPPExpReg::forwardPass() {
|
|
y_hat = Evaluate(inputSet);
|
|
}
|