pmlpp/mlpp/regularization/reg.cpp
2023-04-22 14:23:51 +02:00

365 lines
11 KiB
C++

//
// Reg.cpp
//
// Created by Marc Melikyan on 1/16/21.
//
#include "reg.h"
#include "core/math/math_defs.h"
#include "../activation/activation.h"
#include "../lin_alg/lin_alg.h"
#include <iostream>
#include <random>
real_t MLPPReg::reg_termv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType p_reg) {
int size = weights->size();
const real_t *weights_ptr = weights->ptr();
if (p_reg == REGULARIZATION_TYPE_RIDGE) {
real_t reg = 0;
for (int i = 0; i < size; ++i) {
real_t wi = weights_ptr[i];
reg += wi * wi;
}
return reg * lambda / 2;
} else if (p_reg == REGULARIZATION_TYPE_LASSO) {
real_t reg = 0;
for (int i = 0; i < size; ++i) {
reg += ABS(weights_ptr[i]);
}
return reg * lambda;
} else if (p_reg == REGULARIZATION_TYPE_ELASTIC_NET) {
real_t reg = 0;
for (int i = 0; i < size; ++i) {
real_t wi = weights_ptr[i];
reg += alpha * ABS(wi); // Lasso Reg
reg += ((1 - alpha) / 2) * wi * wi; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
real_t MLPPReg::reg_termm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType p_reg) {
int size = weights->data_size();
const real_t *weights_ptr = weights->ptr();
if (p_reg == REGULARIZATION_TYPE_RIDGE) {
real_t reg = 0;
for (int i = 0; i < size; ++i) {
real_t wi = weights_ptr[i];
reg += wi * wi;
}
return reg * lambda / 2;
} else if (p_reg == REGULARIZATION_TYPE_LASSO) {
real_t reg = 0;
for (int i = 0; i < size; ++i) {
reg += ABS(weights_ptr[i]);
}
return reg * lambda;
} else if (p_reg == REGULARIZATION_TYPE_ELASTIC_NET) {
real_t reg = 0;
for (int i = 0; i < size; ++i) {
real_t wi = weights_ptr[i];
reg += alpha * ABS(wi); // Lasso Reg
reg += ((1 - alpha) / 2) * wi * wi; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
Ref<MLPPVector> MLPPReg::reg_weightsv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType p_reg) {
MLPPLinAlg alg;
if (p_reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) {
return reg_deriv_termv(weights, lambda, alpha, p_reg);
}
return alg.subtractionnv(weights, reg_deriv_termv(weights, lambda, alpha, p_reg));
// for(int i = 0; i < weights.size(); i++){
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
// }
// return weights;
}
Ref<MLPPMatrix> MLPPReg::reg_weightsm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg) {
MLPPLinAlg alg;
if (reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) {
return reg_deriv_termm(weights, lambda, alpha, reg);
}
return alg.subtractionnm(weights, reg_deriv_termm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// for(int j = 0; j < weights[i].size(); j++){
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
// }
// }
// return weights;
}
Ref<MLPPVector> MLPPReg::reg_deriv_termv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg) {
Ref<MLPPVector> reg_driv;
reg_driv.instance();
int size = weights->size();
reg_driv->resize(size);
real_t *reg_driv_ptr = reg_driv->ptrw();
for (int i = 0; i < size; ++i) {
reg_driv_ptr[i] = reg_deriv_termvr(weights, lambda, alpha, reg, i);
}
return reg_driv;
}
Ref<MLPPMatrix> MLPPReg::reg_deriv_termm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg) {
Ref<MLPPMatrix> reg_driv;
reg_driv.instance();
Size2i size = weights->size();
reg_driv->resize(size);
real_t *reg_driv_ptr = reg_driv->ptrw();
for (int i = 0; i < size.y; ++i) {
for (int j = 0; j < size.x; ++j) {
reg_driv_ptr[reg_driv->calculate_index(i, j)] = reg_deriv_termmr(weights, lambda, alpha, reg, i, j);
}
}
return reg_driv;
}
MLPPReg::MLPPReg() {
}
MLPPReg::~MLPPReg() {
}
void MLPPReg::_bind_methods() {
ClassDB::bind_method(D_METHOD("reg_termv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_termv);
ClassDB::bind_method(D_METHOD("reg_termm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_termm);
ClassDB::bind_method(D_METHOD("reg_weightsv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_weightsv);
ClassDB::bind_method(D_METHOD("reg_weightsm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_weightsm);
ClassDB::bind_method(D_METHOD("reg_deriv_termv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_deriv_termv);
ClassDB::bind_method(D_METHOD("reg_deriv_termm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_deriv_termm);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_NONE);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_RIDGE);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_LASSO);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_ELASTIC_NET);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_WEIGHT_CLIPPING);
}
real_t MLPPReg::reg_deriv_termvr(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg, int j) {
MLPPActivation act;
real_t wj = weights->get_element(j);
if (reg == REGULARIZATION_TYPE_RIDGE) {
return lambda * wj;
} else if (reg == REGULARIZATION_TYPE_LASSO) {
return lambda * act.sign_normr(wj);
} else if (reg == REGULARIZATION_TYPE_ELASTIC_NET) {
return alpha * lambda * act.sign_normr(wj) + (1 - alpha) * lambda * wj;
} else if (reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (wj > alpha) {
return alpha;
} else if (wj < lambda) {
return lambda;
} else {
return wj;
}
} else {
return 0;
}
}
real_t MLPPReg::reg_deriv_termmr(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg, int i, int j) {
MLPPActivation act;
real_t wj = weights->get_element(i, j);
if (reg == REGULARIZATION_TYPE_RIDGE) {
return lambda * wj;
} else if (reg == REGULARIZATION_TYPE_LASSO) {
return lambda * act.sign_normr(wj);
} else if (reg == REGULARIZATION_TYPE_ELASTIC_NET) {
return alpha * lambda * act.sign_normr(wj) + (1 - alpha) * lambda * wj;
} else if (reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (wj > alpha) {
return alpha;
} else if (wj < lambda) {
return lambda;
} else {
return wj;
}
} else {
return 0;
}
}
real_t MLPPReg::regTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string p_reg) {
if (p_reg == "Ridge") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += weights[i] * weights[i];
}
return reg * lambda / 2;
} else if (p_reg == "Lasso") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += abs(weights[i]);
}
return reg * lambda;
} else if (p_reg == "ElasticNet") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
reg += alpha * abs(weights[i]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
real_t MLPPReg::regTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string p_reg) {
if (p_reg == "Ridge") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += weights[i][j] * weights[i][j];
}
}
return reg * lambda / 2;
} else if (p_reg == "Lasso") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += abs(weights[i][j]);
}
}
return reg * lambda;
} else if (p_reg == "ElasticNet") {
real_t reg = 0;
for (uint32_t i = 0; i < weights.size(); i++) {
for (uint32_t j = 0; j < weights[i].size(); j++) {
reg += alpha * abs(weights[i][j]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
}
}
return reg * lambda;
}
return 0;
}
std::vector<real_t> MLPPReg::regWeights(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
MLPPLinAlg alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
// }
// return weights;
}
std::vector<std::vector<real_t>> MLPPReg::regWeights(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
MLPPLinAlg alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// for(int j = 0; j < weights[i].size(); j++){
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
// }
// }
// return weights;
}
std::vector<real_t> MLPPReg::regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
std::vector<real_t> regDeriv;
regDeriv.resize(weights.size());
for (uint32_t i = 0; i < regDeriv.size(); i++) {
regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i);
}
return regDeriv;
}
std::vector<std::vector<real_t>> MLPPReg::regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
std::vector<std::vector<real_t>> regDeriv;
regDeriv.resize(weights.size());
for (uint32_t i = 0; i < regDeriv.size(); i++) {
regDeriv[i].resize(weights[0].size());
}
for (uint32_t i = 0; i < regDeriv.size(); i++) {
for (uint32_t j = 0; j < regDeriv[i].size(); j++) {
regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j);
}
}
return regDeriv;
}
real_t MLPPReg::regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg, int j) {
MLPPActivation act;
if (reg == "Ridge") {
return lambda * weights[j];
} else if (reg == "Lasso") {
return lambda * act.sign_normr(weights[j]);
} else if (reg == "ElasticNet") {
return alpha * lambda * act.sign_normr(weights[j]) + (1 - alpha) * lambda * weights[j];
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (weights[j] > alpha) {
return alpha;
} else if (weights[j] < lambda) {
return lambda;
} else {
return weights[j];
}
} else {
return 0;
}
}
real_t MLPPReg::regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg, int i, int j) {
MLPPActivation act;
if (reg == "Ridge") {
return lambda * weights[i][j];
} else if (reg == "Lasso") {
return lambda * act.sign_normr(weights[i][j]);
} else if (reg == "ElasticNet") {
return alpha * lambda * act.sign_normr(weights[i][j]) + (1 - alpha) * lambda * weights[i][j];
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (weights[i][j] > alpha) {
return alpha;
} else if (weights[i][j] < lambda) {
return lambda;
} else {
return weights[i][j];
}
} else {
return 0;
}
}