pmlpp/mlpp/mann/mann.cpp
2023-04-22 14:23:51 +02:00

295 lines
9.6 KiB
C++

//
// MANN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "mann.h"
#include "core/log/logger.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
/*
Ref<MLPPMatrix> MLPPMANN::get_input_set() {
return input_set;
}
void MLPPMANN::set_input_set(const Ref<MLPPMatrix> &val) {
input_set = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPMANN::get_output_set() {
return output_set;
}
void MLPPMANN::set_output_set(const Ref<MLPPMatrix> &val) {
output_set = val;
_initialized = false;
}
*/
Ref<MLPPMatrix> MLPPMANN::model_set_test(const Ref<MLPPMatrix> &X) {
ERR_FAIL_COND_V(!_initialized, Ref<MLPPMatrix>());
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[0];
layer->set_input(X);
layer->forward_pass();
for (int i = 1; i < _network.size(); i++) {
layer = _network[i];
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
layer->set_input(prev_layer->get_a());
layer->forward_pass();
}
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
} else {
_output_layer->set_input(X);
}
_output_layer->forward_pass();
return _output_layer->get_a();
}
Ref<MLPPVector> MLPPMANN::model_test(const Ref<MLPPVector> &x) {
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[0];
layer->test(x);
for (int i = 1; i < _network.size(); i++) {
layer = _network[i];
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
layer->test(prev_layer->get_a_test());
}
_output_layer->test(_network.write[_network.size() - 1]->get_a_test());
} else {
_output_layer->test(x);
}
return _output_layer->get_a_test();
}
void MLPPMANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPCost mlpp_cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
if (_output_layer->get_activation() == MLPPActivation::ACTIVATION_FUNCTION_SOFTMAX) {
_output_layer->set_delta(alg.subtractionnm(_y_hat, _output_set));
} else {
_output_layer->set_delta(alg.hadamard_productnm(mlpp_cost.run_cost_deriv_matrix(_output_layer->get_cost(), _y_hat, _output_set), avn.run_activation_deriv_matrix(_output_layer->get_activation(), _output_layer->get_z())));
}
Ref<MLPPMatrix> output_w_grad = alg.matmultnm(alg.transposenm(_output_layer->get_input()), _output_layer->get_delta());
_output_layer->set_weights(alg.subtractionnm(_output_layer->get_weights(), alg.scalar_multiplynm(learning_rate / _n, output_w_grad)));
_output_layer->set_weights(regularization.reg_weightsm(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()));
_output_layer->set_bias(alg.subtract_matrix_rows(_output_layer->get_bias(), alg.scalar_multiplynm(learning_rate / _n, _output_layer->get_delta())));
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
//auto hiddenLayerAvn = layer.activation_map[layer.activation];
layer->set_delta(alg.hadamard_productnm(alg.matmultnm(_output_layer->get_delta(), alg.transposenm(_output_layer->get_weights())), avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
Ref<MLPPMatrix> hidden_layer_w_grad = alg.matmultnm(alg.transposenm(layer->get_input()), layer->get_delta());
layer->set_weights(alg.subtractionnm(layer->get_weights(), alg.scalar_multiplynm(learning_rate / _n, hidden_layer_w_grad)));
layer->set_weights(regularization.reg_weightsm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplynm(learning_rate / _n, layer->get_delta())));
for (int i = _network.size() - 2; i >= 0; i--) {
layer = _network[i];
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
//hiddenLayerAvn = layer.activation_map[layer.activation];
layer->set_delta(alg.hadamard_productnm(alg.matmultnm(next_layer->get_delta(), next_layer->get_weights()), avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
hidden_layer_w_grad = alg.matmultnm(alg.transposenm(layer->get_input()), layer->get_delta());
layer->set_weights(alg.subtractionnm(layer->get_weights(), alg.scalar_multiplynm(learning_rate / _n, hidden_layer_w_grad)));
layer->set_weights(regularization.reg_weightsm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()));
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplynm(learning_rate / _n, layer->get_delta())));
}
}
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
PLOG_MSG("Layer " + itos(_network.size() + 1) + ": ");
MLPPUtilities::print_ui_mb(_output_layer->get_weights(), _output_layer->get_bias());
if (!_network.empty()) {
for (int i = _network.size() - 1; i >= 0; i--) {
PLOG_MSG("Layer " + itos(i + 1) + ": ");
Ref<MLPPHiddenLayer> layer = _network[i];
MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias());
}
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
real_t MLPPMANN::score() {
ERR_FAIL_COND_V(!_initialized, 0);
MLPPUtilities util;
forward_pass();
return util.performance_mat(_y_hat, _output_set);
}
void MLPPMANN::save(const String &file_name) {
ERR_FAIL_COND(!_initialized);
/*
MLPPUtilities util;
if (!_network.empty()) {
util.saveParameters(file_name, _network[0].weights, _network[0].bias, false, 1);
for (uint32_t i = 1; i < _network.size(); i++) {
util.saveParameters(file_name, _network[i].weights, _network[i].bias, true, i + 1);
}
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, true, _network.size() + 1);
} else {
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, false, _network.size() + 1);
}
*/
}
void MLPPMANN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
if (_network.empty()) {
_network.push_back(Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _input_set, weight_init, reg, lambda, alpha))));
_network.write[0]->forward_pass();
} else {
_network.push_back(Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha))));
_network.write[_network.size() - 1]->forward_pass();
}
}
void MLPPMANN::add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
if (!_network.empty()) {
_output_layer = Ref<MLPPMultiOutputLayer>(memnew(MLPPMultiOutputLayer(_n_output, _network.write[_network.size() - 1]->get_n_hidden(), activation, loss, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha)));
} else {
_output_layer = Ref<MLPPMultiOutputLayer>(memnew(MLPPMultiOutputLayer(_n_output, _k, activation, loss, _input_set, weight_init, reg, lambda, alpha)));
}
}
bool MLPPMANN::is_initialized() {
return _initialized;
}
void MLPPMANN::initialize() {
if (_initialized) {
return;
}
//ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0);
_initialized = true;
}
MLPPMANN::MLPPMANN(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_n_output = _output_set->size().x;
_initialized = true;
}
MLPPMANN::MLPPMANN() {
_initialized = false;
}
MLPPMANN::~MLPPMANN() {
}
real_t MLPPMANN::cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y) {
MLPPReg regularization;
MLPPCost mlpp_cost;
real_t total_reg_term = 0;
if (!_network.empty()) {
for (int i = 0; i < _network.size() - 1; i++) {
Ref<MLPPHiddenLayer> layer = _network[i];
total_reg_term += regularization.reg_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg());
}
}
return mlpp_cost.run_cost_norm_matrix(_output_layer->get_cost(), y_hat, y) + total_reg_term + regularization.reg_termm(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg());
}
void MLPPMANN::forward_pass() {
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[0];
layer->set_input(_input_set);
layer->forward_pass();
for (int i = 1; i < _network.size(); i++) {
layer = _network[i];
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
layer->set_input(prev_layer->get_a());
layer->forward_pass();
}
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
} else {
_output_layer->set_input(_input_set);
}
_output_layer->forward_pass();
_y_hat = _output_layer->get_a();
}
void MLPPMANN::_bind_methods() {
/*
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMANN::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMANN::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMANN::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMANN::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set");
*/
}