mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-24 15:57:18 +01:00
178 lines
6.1 KiB
C++
178 lines
6.1 KiB
C++
//
|
|
// Reg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 1/16/21.
|
|
//
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
#include "Reg.hpp"
|
|
#include "LinAlg/LinAlg.hpp"
|
|
#include "Activation/Activation.hpp"
|
|
|
|
namespace MLPP{
|
|
|
|
double Reg::regTerm(std::vector<double> weights, double lambda, double alpha, std::string reg){
|
|
if(reg == "Ridge"){
|
|
double reg = 0;
|
|
for(int i = 0; i < weights.size(); i++){
|
|
reg += weights[i] * weights[i];
|
|
}
|
|
return reg * lambda / 2;
|
|
}
|
|
else if(reg == "Lasso"){
|
|
double reg = 0;
|
|
for(int i = 0; i < weights.size(); i++){
|
|
reg += abs(weights[i]);
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
else if(reg == "ElasticNet"){
|
|
double reg = 0;
|
|
for(int i = 0; i < weights.size(); i++){
|
|
reg += alpha * abs(weights[i]); // Lasso Reg
|
|
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
double Reg::regTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg){
|
|
if(reg == "Ridge"){
|
|
double reg = 0;
|
|
for(int i = 0; i < weights.size(); i++){
|
|
for(int j = 0; j < weights[i].size(); j++){
|
|
reg += weights[i][j] * weights[i][j];
|
|
}
|
|
}
|
|
return reg * lambda / 2;
|
|
}
|
|
else if(reg == "Lasso"){
|
|
double reg = 0;
|
|
for(int i = 0; i < weights.size(); i++){
|
|
for(int j = 0; j < weights[i].size(); j++){
|
|
reg += abs(weights[i][j]);
|
|
}
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
else if(reg == "ElasticNet"){
|
|
double reg = 0;
|
|
for(int i = 0; i < weights.size(); i++){
|
|
for(int j = 0; j < weights[i].size(); j++){
|
|
reg += alpha * abs(weights[i][j]); // Lasso Reg
|
|
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
|
|
}
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
std::vector<double> Reg::regWeights(std::vector<double> weights, double lambda, double alpha, std::string reg){
|
|
LinAlg alg;
|
|
if(reg == "WeightClipping"){ return regDerivTerm(weights, lambda, alpha, reg); }
|
|
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
|
|
// for(int i = 0; i < weights.size(); i++){
|
|
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
|
|
// }
|
|
// return weights;
|
|
}
|
|
|
|
std::vector<std::vector<double>> Reg::regWeights(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg){
|
|
LinAlg alg;
|
|
if(reg == "WeightClipping"){ return regDerivTerm(weights, lambda, alpha, reg); }
|
|
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
|
|
// for(int i = 0; i < weights.size(); i++){
|
|
// for(int j = 0; j < weights[i].size(); j++){
|
|
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
|
|
// }
|
|
// }
|
|
// return weights;
|
|
}
|
|
|
|
std::vector<double> Reg::regDerivTerm(std::vector<double> weights, double lambda, double alpha, std::string reg){
|
|
std::vector<double> regDeriv;
|
|
regDeriv.resize(weights.size());
|
|
|
|
for(int i = 0; i < regDeriv.size(); i++){
|
|
regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i);
|
|
}
|
|
return regDeriv;
|
|
}
|
|
|
|
std::vector<std::vector<double>> Reg::regDerivTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg){
|
|
std::vector<std::vector<double>> regDeriv;
|
|
regDeriv.resize(weights.size());
|
|
for(int i = 0; i < regDeriv.size(); i++){
|
|
regDeriv[i].resize(weights[0].size());
|
|
}
|
|
|
|
for(int i = 0; i < regDeriv.size(); i++){
|
|
for(int j = 0; j < regDeriv[i].size(); j++){
|
|
regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j);
|
|
}
|
|
}
|
|
return regDeriv;
|
|
}
|
|
|
|
double Reg::regDerivTerm(std::vector<double> weights, double lambda, double alpha, std::string reg, int j){
|
|
Activation act;
|
|
if(reg == "Ridge"){
|
|
return lambda * weights[j];
|
|
}
|
|
else if(reg == "Lasso"){
|
|
return lambda * act.sign(weights[j]);
|
|
}
|
|
else if(reg == "ElasticNet"){
|
|
return alpha * lambda * act.sign(weights[j]) + (1 - alpha) * lambda * weights[j];
|
|
}
|
|
else if(reg == "WeightClipping"){ // Preparation for Wasserstein GANs.
|
|
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
|
|
// alpha > lambda.
|
|
if(weights[j] > alpha){
|
|
return alpha;
|
|
}
|
|
else if(weights[j] < lambda){
|
|
return lambda;
|
|
}
|
|
else{
|
|
return weights[j];
|
|
}
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
double Reg::regDerivTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg, int i, int j){
|
|
Activation act;
|
|
if(reg == "Ridge"){
|
|
return lambda * weights[i][j];
|
|
}
|
|
else if(reg == "Lasso"){
|
|
return lambda * act.sign(weights[i][j]);
|
|
}
|
|
else if(reg == "ElasticNet"){
|
|
return alpha * lambda * act.sign(weights[i][j]) + (1 - alpha) * lambda * weights[i][j];
|
|
}
|
|
else if(reg == "WeightClipping"){ // Preparation for Wasserstein GANs.
|
|
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
|
|
// alpha > lambda.
|
|
if(weights[i][j] > alpha){
|
|
return alpha;
|
|
}
|
|
else if(weights[i][j] < lambda){
|
|
return lambda;
|
|
}
|
|
else{
|
|
return weights[i][j];
|
|
}
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|