mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-25 15:59:19 +01:00
305 lines
12 KiB
C++
305 lines
12 KiB
C++
//
|
|
// NumericalAnalysis.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/13/20.
|
|
//
|
|
|
|
#include "NumericalAnalysis.hpp"
|
|
#include "LinAlg/LinAlg.hpp"
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <cmath>
|
|
#include <climits>
|
|
|
|
namespace MLPP{
|
|
|
|
double NumericalAnalysis::numDiff(double(*function)(double), double x){
|
|
double eps = 1e-10;
|
|
return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative.
|
|
}
|
|
|
|
|
|
double NumericalAnalysis::numDiff_2(double(*function)(double), double x){
|
|
double eps = 1e-5;
|
|
return (function(x + 2 * eps) - 2 * function(x + eps) + function(x)) / (eps * eps);
|
|
}
|
|
|
|
double NumericalAnalysis::numDiff_3(double(*function)(double), double x){
|
|
double eps = 1e-5;
|
|
double t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps);
|
|
double t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x);
|
|
return (t1 - t2)/(eps * eps * eps);
|
|
}
|
|
|
|
double NumericalAnalysis::constantApproximation(double(*function)(double), double c){
|
|
return function(c);
|
|
}
|
|
|
|
double NumericalAnalysis::linearApproximation(double(*function)(double), double c, double x){
|
|
return constantApproximation(function, c) + numDiff(function, c) * (x - c);
|
|
}
|
|
|
|
double NumericalAnalysis::quadraticApproximation(double(*function)(double), double c, double x){
|
|
return linearApproximation(function, c, x) + 0.5 * numDiff_2(function, c) * (x - c) * (x - c);
|
|
}
|
|
|
|
double NumericalAnalysis::cubicApproximation(double(*function)(double), double c, double x){
|
|
return quadraticApproximation(function, c, x) + (1/6) * numDiff_3(function, c) * (x - c) * (x - c) * (x - c);
|
|
}
|
|
|
|
double NumericalAnalysis::numDiff(double(*function)(std::vector<double>), std::vector<double> x, int axis){
|
|
// For multivariable function analysis.
|
|
// This will be used for calculating Jacobian vectors.
|
|
// Diffrentiate with respect to indicated axis. (0, 1, 2 ...)
|
|
double eps = 1e-10;
|
|
std::vector<double> x_eps = x;
|
|
x_eps[axis] += eps;
|
|
|
|
return (function(x_eps) - function(x)) / eps;
|
|
}
|
|
|
|
double NumericalAnalysis::numDiff_2(double(*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2){
|
|
//For Hessians.
|
|
double eps = 1e-5;
|
|
|
|
std::vector<double> x_pp = x;
|
|
x_pp[axis1] += eps;
|
|
x_pp[axis2] += eps;
|
|
|
|
std::vector<double> x_np = x;
|
|
x_np[axis2] += eps;
|
|
|
|
std::vector<double> x_pn = x;
|
|
x_pn[axis1] += eps;
|
|
|
|
return (function(x_pp) - function(x_np) - function(x_pn) + function(x))/(eps * eps);
|
|
}
|
|
|
|
double NumericalAnalysis::numDiff_3(double(*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2, int axis3){
|
|
// For third order derivative tensors.
|
|
// NOTE: Approximations do not appear to be accurate for sinusodial functions...
|
|
// Should revisit this later.
|
|
double eps = INT_MAX;
|
|
|
|
std::vector<double> x_ppp = x;
|
|
x_ppp[axis1] += eps;
|
|
x_ppp[axis2] += eps;
|
|
x_ppp[axis3] += eps;
|
|
|
|
std::vector<double> x_npp = x;
|
|
x_npp[axis2] += eps;
|
|
x_npp[axis3] += eps;
|
|
|
|
std::vector<double> x_pnp = x;
|
|
x_pnp[axis1] += eps;
|
|
x_pnp[axis3] += eps;
|
|
|
|
std::vector<double> x_nnp = x;
|
|
x_nnp[axis3] += eps;
|
|
|
|
|
|
std::vector<double> x_ppn = x;
|
|
x_ppn[axis1] += eps;
|
|
x_ppn[axis2] += eps;
|
|
|
|
std::vector<double> x_npn = x;
|
|
x_npn[axis2] += eps;
|
|
|
|
std::vector<double> x_pnn = x;
|
|
x_pnn[axis1] += eps;
|
|
|
|
double thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp);
|
|
double noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x);
|
|
return (thirdAxis - noThirdAxis)/(eps * eps * eps);
|
|
}
|
|
|
|
double NumericalAnalysis::newtonRaphsonMethod(double(*function)(double), double x_0, double epoch_num){
|
|
double x = x_0;
|
|
for(int i = 0; i < epoch_num; i++){
|
|
x -= function(x)/numDiff(function, x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
double NumericalAnalysis::halleyMethod(double (*function)(double), double x_0, double epoch_num){
|
|
double x = x_0;
|
|
for(int i = 0; i < epoch_num; i++){
|
|
x -= ((2 * function(x) * numDiff(function, x))/(2 * numDiff(function, x) * numDiff(function, x) - function(x) * numDiff_2(function, x)));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
double NumericalAnalysis::invQuadraticInterpolation(double (*function)(double), std::vector<double> x_0, double epoch_num){
|
|
double x = 0;
|
|
std::vector<double> currentThree = x_0;
|
|
for(int i = 0; i < epoch_num; i++){
|
|
double t1 = ((function(currentThree[1]) * function(currentThree[2]))/( (function(currentThree[0]) - function(currentThree[1])) * (function(currentThree[0]) - function(currentThree[2])) ) ) * currentThree[0];
|
|
double t2 = ((function(currentThree[0]) * function(currentThree[2]))/( (function(currentThree[1]) - function(currentThree[0])) * (function(currentThree[1]) - function(currentThree[2])) ) ) * currentThree[1];
|
|
double t3 = ((function(currentThree[0]) * function(currentThree[1]))/( (function(currentThree[2]) - function(currentThree[0])) * (function(currentThree[2]) - function(currentThree[1])) ) ) * currentThree[2];
|
|
x = t1 + t2 + t3;
|
|
|
|
currentThree.erase(currentThree.begin());
|
|
currentThree.push_back(x);
|
|
|
|
}
|
|
return x;
|
|
}
|
|
|
|
double NumericalAnalysis::eulerianMethod(double(*derivative)(double), std::vector<double> q_0, double p, double h){
|
|
double max_epoch = (p - q_0[0])/h;
|
|
double x = q_0[0];
|
|
double y = q_0[1];
|
|
for(int i = 0; i < max_epoch; i++){
|
|
y = y + h * derivative(x);
|
|
x += h;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
double NumericalAnalysis::eulerianMethod(double(*derivative)(std::vector<double>), std::vector<double> q_0, double p, double h){
|
|
double max_epoch = (p - q_0[0])/h;
|
|
double x = q_0[0];
|
|
double y = q_0[1];
|
|
for(int i = 0; i < max_epoch; i++){
|
|
y = y + h * derivative({x, y});
|
|
x += h;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
double NumericalAnalysis::growthMethod(double C, double k, double t){
|
|
/*
|
|
dP/dt = kP
|
|
dP/P = kdt
|
|
integral(1/P)dP = integral(k) dt
|
|
ln|P| = kt + C_initial
|
|
|P| = e^(kt + C_initial)
|
|
|P| = e^(C_initial) * e^(kt)
|
|
P = +/- e^(C_initial) * e^(kt)
|
|
P = C * e^(kt)
|
|
*/
|
|
|
|
// auto growthFunction = [&C, &k](double t) { return C * exp(k * t); };
|
|
return C * std::exp(k * t);
|
|
}
|
|
|
|
std::vector<double> NumericalAnalysis::jacobian(double(*function)(std::vector<double>), std::vector<double> x){
|
|
std::vector<double> jacobian;
|
|
jacobian.resize(x.size());
|
|
for(int i = 0; i < jacobian.size(); i++){
|
|
jacobian[i] = numDiff(function, x, i); // Derivative w.r.t axis i evaluated at x. For all x_i.
|
|
}
|
|
return jacobian;
|
|
}
|
|
std::vector<std::vector<double>> NumericalAnalysis::hessian(double(*function)(std::vector<double>), std::vector<double> x){
|
|
std::vector<std::vector<double>> hessian;
|
|
hessian.resize(x.size());
|
|
for(int i = 0; i < hessian.size(); i++){
|
|
hessian[i].resize(x.size());
|
|
}
|
|
for(int i = 0; i < hessian.size(); i++){
|
|
for(int j = 0; j < hessian[i].size(); j++){
|
|
hessian[i][j] = numDiff_2(function, x, i, j);
|
|
}
|
|
}
|
|
return hessian;
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<double>>> NumericalAnalysis::thirdOrderTensor(double(*function)(std::vector<double>), std::vector<double> x){
|
|
std::vector<std::vector<std::vector<double>>> tensor;
|
|
tensor.resize(x.size());
|
|
for(int i = 0; i < tensor.size(); i++){
|
|
tensor[i].resize(x.size());
|
|
for(int j = 0; j < tensor[i].size(); j++){
|
|
tensor[i][j].resize(x.size());
|
|
}
|
|
}
|
|
for(int i = 0; i < tensor.size(); i++){ // O(n^3) time complexity :(
|
|
for(int j = 0; j < tensor[i].size(); j++){
|
|
for(int k = 0; k < tensor[i][j].size(); k++)
|
|
tensor[i][j][k] = numDiff_3(function, x, i, j, k);
|
|
}
|
|
}
|
|
return tensor;
|
|
}
|
|
|
|
double NumericalAnalysis::constantApproximation(double(*function)(std::vector<double>), std::vector<double> c){
|
|
return function(c);
|
|
}
|
|
|
|
double NumericalAnalysis::linearApproximation(double(*function)(std::vector<double>), std::vector<double> c, std::vector<double> x){
|
|
LinAlg alg;
|
|
return constantApproximation(function, c) + alg.matmult(alg.transpose({jacobian(function, c)}), {alg.subtraction(x, c)})[0][0];
|
|
}
|
|
|
|
double NumericalAnalysis::quadraticApproximation(double(*function)(std::vector<double>), std::vector<double> c, std::vector<double> x){
|
|
LinAlg alg;
|
|
return linearApproximation(function, c, x) + 0.5 * alg.matmult({(alg.subtraction(x, c))}, alg.matmult(hessian(function, c), alg.transpose({alg.subtraction(x, c)})))[0][0];
|
|
}
|
|
|
|
double NumericalAnalysis::cubicApproximation(double(*function)(std::vector<double>), std::vector<double> c, std::vector<double> x){
|
|
/*
|
|
Not completely sure as the literature seldom discusses the third order taylor approximation,
|
|
in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies
|
|
should look something like this:
|
|
|
|
(N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N)
|
|
Perform remaining multiplies as done for the 2nd order approximation.
|
|
Result is a scalar.
|
|
*/
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c));
|
|
double resultScalar = alg.matmult({(alg.subtraction(x, c))}, alg.matmult(resultMat, alg.transpose({alg.subtraction(x, c)})))[0][0];
|
|
|
|
return quadraticApproximation(function, c, x) + (1/6) * resultScalar;
|
|
}
|
|
|
|
double NumericalAnalysis::laplacian(double(*function)(std::vector<double>), std::vector<double> x){
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> hessian_matrix = hessian(function, x);
|
|
double laplacian = 0;
|
|
for(int i = 0; i < hessian_matrix.size(); i++){
|
|
laplacian += hessian_matrix[i][i]; // homogenous 2nd derivs w.r.t i, then i
|
|
}
|
|
return laplacian;
|
|
}
|
|
|
|
std::string NumericalAnalysis::secondPartialDerivativeTest(double(*function)(std::vector<double>), std::vector<double> x){
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> hessianMatrix = hessian(function, x);
|
|
/*
|
|
The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than
|
|
2, and the calculations specific to the bivariate case are less computationally intensive.
|
|
*/
|
|
if(x.size() == 2){
|
|
double det = alg.det(hessianMatrix, hessianMatrix.size());
|
|
double secondDerivative = numDiff_2(function, x, 0, 0);
|
|
if(secondDerivative > 0 && det > 0){
|
|
return "min";
|
|
}
|
|
else if(secondDerivative < 0 && det > 0){
|
|
return "max";
|
|
}
|
|
else if(det < 0){
|
|
return "saddle";
|
|
}
|
|
else{
|
|
return "test was inconclusive";
|
|
}
|
|
}
|
|
else {
|
|
if(alg.positiveDefiniteChecker(hessianMatrix)){
|
|
return "min";
|
|
}
|
|
else if(alg.negativeDefiniteChecker(hessianMatrix)){
|
|
return "max";
|
|
}
|
|
else if(!alg.zeroEigenvalue(hessianMatrix)){
|
|
return "saddle";
|
|
}
|
|
else{
|
|
return "test was inconclusive";
|
|
}
|
|
}
|
|
}
|
|
} |