pmlpp/mlpp/bernoulli_nb/bernoulli_nb.cpp

190 lines
4.0 KiB
C++

//
// BernoulliNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "bernoulli_nb.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
std::vector<real_t> MLPPBernoulliNB::model_set_test(std::vector<std::vector<real_t>> X) {
std::vector<real_t> y_hat;
for (uint32_t i = 0; i < X.size(); i++) {
y_hat.push_back(model_test(X[i]));
}
return y_hat;
}
real_t MLPPBernoulliNB::model_test(std::vector<real_t> x) {
real_t score_0 = 1;
real_t score_1 = 1;
std::vector<int> foundIndices;
for (uint32_t j = 0; j < x.size(); j++) {
for (uint32_t k = 0; k < _vocab.size(); k++) {
if (x[j] == _vocab[k]) {
score_0 *= _theta[0][_vocab[k]];
score_1 *= _theta[1][_vocab[k]];
foundIndices.push_back(k);
}
}
}
for (uint32_t i = 0; i < _vocab.size(); i++) {
bool found = false;
for (uint32_t j = 0; j < foundIndices.size(); j++) {
if (_vocab[i] == _vocab[foundIndices[j]]) {
found = true;
}
}
if (!found) {
score_0 *= 1 - _theta[0][_vocab[i]];
score_1 *= 1 - _theta[1][_vocab[i]];
}
}
score_0 *= _prior_0;
score_1 *= _prior_1;
// Assigning the traning example to a class
if (score_0 > score_1) {
return 0;
} else {
return 1;
}
}
real_t MLPPBernoulliNB::score() {
MLPPUtilities util;
return util.performance(_y_hat, _output_set);
}
MLPPBernoulliNB::MLPPBernoulliNB(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set) {
_input_set = p_input_set;
_output_set = p_output_set;
_class_num = 2;
_prior_1 = 0;
_prior_0 = 0;
_y_hat.resize(_output_set.size());
evaluate();
}
MLPPBernoulliNB::MLPPBernoulliNB() {
_prior_1 = 0;
_prior_0 = 0;
}
MLPPBernoulliNB::~MLPPBernoulliNB() {
}
void MLPPBernoulliNB::compute_vocab() {
MLPPLinAlg alg;
MLPPData data;
_vocab = data.vecToSet<real_t>(alg.flatten(_input_set));
}
void MLPPBernoulliNB::compute_theta() {
// Resizing theta for the sake of ease & proper access of the elements.
_theta.resize(_class_num);
// Setting all values in the hasmap by default to 0.
for (int i = _class_num - 1; i >= 0; i--) {
for (uint32_t j = 0; j < _vocab.size(); j++) {
_theta[i][_vocab[j]] = 0;
}
}
for (uint32_t i = 0; i < _input_set.size(); i++) {
for (uint32_t j = 0; j < _input_set[0].size(); j++) {
_theta[_output_set[i]][_input_set[i][j]]++;
}
}
for (uint32_t i = 0; i < _theta.size(); i++) {
for (uint32_t j = 0; j < _theta[i].size(); j++) {
if (i == 0) {
_theta[i][j] /= _prior_0 * _y_hat.size();
} else {
_theta[i][j] /= _prior_1 * _y_hat.size();
}
}
}
}
void MLPPBernoulliNB::evaluate() {
for (uint32_t i = 0; i < _output_set.size(); i++) {
// Pr(B | A) * Pr(A)
real_t score_0 = 1;
real_t score_1 = 1;
real_t sum = 0;
for (uint32_t ii = 0; ii < _output_set.size(); ii++) {
if (_output_set[ii] == 1) {
sum += _output_set[ii];
}
}
// Easy computation of priors, i.e. Pr(C_k)
_prior_1 = sum / _y_hat.size();
_prior_0 = 1 - _prior_1;
// Evaluating Theta...
compute_theta();
// Evaluating the vocab set...
compute_vocab();
std::vector<int> foundIndices;
for (uint32_t j = 0; j < _input_set.size(); j++) {
for (uint32_t k = 0; k < _vocab.size(); k++) {
if (_input_set[i][j] == _vocab[k]) {
score_0 += std::log(_theta[0][_vocab[k]]);
score_1 += std::log(_theta[1][_vocab[k]]);
foundIndices.push_back(k);
}
}
}
for (uint32_t ii = 0; ii < _vocab.size(); ii++) {
bool found = false;
for (uint32_t j = 0; j < foundIndices.size(); j++) {
if (_vocab[ii] == _vocab[foundIndices[j]]) {
found = true;
}
}
if (!found) {
score_0 += std::log(1 - _theta[0][_vocab[ii]]);
score_1 += std::log(1 - _theta[1][_vocab[ii]]);
}
}
score_0 += std::log(_prior_0);
score_1 += std::log(_prior_1);
score_0 = exp(score_0);
score_1 = exp(score_1);
std::cout << score_0 << std::endl;
std::cout << score_1 << std::endl;
// Assigning the traning example to a class
if (score_0 > score_1) {
_y_hat[i] = 0;
} else {
_y_hat[i] = 1;
}
}
}