pmlpp/mlpp/softmax_net/softmax_net.h

121 lines
3.1 KiB
C++

#ifndef MLPP_SOFTMAX_NET_H
#define MLPP_SOFTMAX_NET_H
#include "core/math/math_defs.h"
#include "core/object/resource.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPSoftmaxNet : public Resource {
GDCLASS(MLPPSoftmaxNet, Resource);
public:
Ref<MLPPMatrix> get_input_set() const;
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set() const;
void set_output_set(const Ref<MLPPMatrix> &val);
int get_n_hidden() const;
void set_n_hidden(const int val);
MLPPReg::RegularizationType get_reg() const;
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda() const;
void set_lambda(const real_t val);
real_t get_alpha() const;
void set_alpha(const real_t val);
Ref<MLPPMatrix> data_y_hat_get() const;
void data_y_hat_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_weights1_get() const;
void data_weights1_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_weights2_get() const;
void data_weights2_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> data_bias1_get() const;
void data_bias1_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> data_bias2_get() const;
void data_bias2_set(const Ref<MLPPVector> &val);
Ref<MLPPMatrix> data_z2_get() const;
void data_z2_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> data_a2_get() const;
void data_a2_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void train_sgd(real_t learning_rate, int max_epoch, bool ui = false);
void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
Ref<MLPPMatrix> get_embeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
bool needs_init() const;
void initialize();
MLPPSoftmaxNet(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPSoftmaxNet();
~MLPPSoftmaxNet();
protected:
real_t cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
Ref<MLPPVector> evaluatev(const Ref<MLPPVector> &x);
struct PropagateVResult {
Ref<MLPPVector> z2;
Ref<MLPPVector> a2;
};
PropagateVResult propagatev(const Ref<MLPPVector> &x);
Ref<MLPPMatrix> evaluatem(const Ref<MLPPMatrix> &X);
struct PropagateMResult {
Ref<MLPPMatrix> z2;
Ref<MLPPMatrix> a2;
};
PropagateMResult propagatem(const Ref<MLPPMatrix> &X);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPMatrix> _output_set;
int _n_hidden;
// Regularization Params
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
Ref<MLPPMatrix> _y_hat;
Ref<MLPPMatrix> _weights1;
Ref<MLPPMatrix> _weights2;
Ref<MLPPVector> _bias1;
Ref<MLPPVector> _bias2;
Ref<MLPPMatrix> _z2;
Ref<MLPPMatrix> _a2;
};
#endif /* SoftmaxNet_hpp */