pmlpp/mlpp/mann/mann.h

70 lines
1.9 KiB
C++

#ifndef MLPP_MANN_H
#define MLPP_MANN_H
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "../regularization/reg.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
class MLPPMANN : public Reference {
GDCLASS(MLPPMANN, Reference);
public:
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set();
void set_output_set(const Ref<MLPPMatrix> &val);
*/
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
real_t score();
void save(const String &file_name);
void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5);
void add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5);
bool is_initialized();
void initialize();
MLPPMANN(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set);
MLPPMANN();
~MLPPMANN();
private:
real_t cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPMatrix> _output_set;
Ref<MLPPMatrix> _y_hat;
Vector<Ref<MLPPHiddenLayer>> _network;
Ref<MLPPMultiOutputLayer> _output_layer;
int _n;
int _k;
int _n_output;
bool _initialized;
};
#endif /* MANN_hpp */