mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-22 15:37:17 +01:00
55 lines
1.2 KiB
C++
55 lines
1.2 KiB
C++
//
|
|
// PCA.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "pca.h"
|
|
#include "../data/data.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
|
|
|
|
MLPPPCA::MLPPPCA(std::vector<std::vector<real_t>> inputSet, int k) :
|
|
inputSet(inputSet), k(k) {
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPPCA::principalComponents() {
|
|
MLPPLinAlg alg;
|
|
MLPPData data;
|
|
|
|
auto [U, S, Vt] = alg.SVD(alg.cov(inputSet));
|
|
X_normalized = data.meanCentering(inputSet);
|
|
U_reduce.resize(U.size());
|
|
for (int i = 0; i < k; i++) {
|
|
for (int j = 0; j < U.size(); j++) {
|
|
U_reduce[j].push_back(U[j][i]);
|
|
}
|
|
}
|
|
Z = alg.matmult(alg.transpose(U_reduce), X_normalized);
|
|
return Z;
|
|
}
|
|
// Simply tells us the percentage of variance maintained.
|
|
real_t MLPPPCA::score() {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> X_approx = alg.matmult(U_reduce, Z);
|
|
real_t num, den = 0;
|
|
for (int i = 0; i < X_normalized.size(); i++) {
|
|
num += alg.norm_sq(alg.subtraction(X_normalized[i], X_approx[i]));
|
|
}
|
|
num /= X_normalized.size();
|
|
for (int i = 0; i < X_normalized.size(); i++) {
|
|
den += alg.norm_sq(X_normalized[i]);
|
|
}
|
|
|
|
den /= X_normalized.size();
|
|
if (den == 0) {
|
|
den += 1e-10; // For numerical sanity as to not recieve a domain error
|
|
}
|
|
return 1 - num / den;
|
|
}
|
|
|