pmlpp/mlpp/dual_svc/dual_svc.h

72 lines
2.4 KiB
C++

//
// DualSVC.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
// http://disp.ee.ntu.edu.tw/~pujols/Support%20Vector%20Machine.pdf
// http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf
// Were excellent for the practical intution behind the dual formulation.
#ifndef DualSVC_hpp
#define DualSVC_hpp
#include <vector>
#include <string>
namespace MLPP {
class DualSVC{
public:
DualSVC(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, double C, std::string kernel = "Linear");
DualSVC(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, double C, std::string kernel, double p, double c);
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
double modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
void SGD(double learning_rate, int max_epoch, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
double score();
void save(std::string fileName);
private:
void init();
double Cost(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y);
std::vector<double> Evaluate(std::vector<std::vector<double>> X);
std::vector<double> propagate(std::vector<std::vector<double>> X);
double Evaluate(std::vector<double> x);
double propagate(std::vector<double> x);
void forwardPass();
void alphaProjection();
double kernelFunction(std::vector<double> v, std::vector<double> u, std::string kernel);
std::vector<std::vector<double>> kernelFunction(std::vector<std::vector<double>> U, std::vector<std::vector<double>> V, std::string kernel);
std::vector<std::vector<double>> inputSet;
std::vector<double> outputSet;
std::vector<double> z;
std::vector<double> y_hat;
double bias;
std::vector<double> alpha;
std::vector<std::vector<double>> K;
double C;
int n;
int k;
std::string kernel;
double p; // Poly
double c; // Poly
// UI Portion
void UI(int epoch, double cost_prev);
};
}
#endif /* DualSVC_hpp */