pmlpp/mlpp/lin_alg/mlpp_vector.cpp

1163 lines
27 KiB
C++

#include "mlpp_vector.h"
#include "mlpp_matrix.h"
void MLPPVector::flatten_vectors(const Vector<Ref<MLPPVector>> &A) {
int vsize = 0;
for (int i = 0; i < A.size(); ++i) {
vsize += A[i]->size();
}
resize(vsize);
int a_index = 0;
real_t *a_ptr = ptrw();
for (int i = 0; i < A.size(); ++i) {
const Ref<MLPPVector> &r = A[i];
int r_size = r->size();
const real_t *r_ptr = r->ptr();
for (int j = 0; j < r_size; ++j) {
a_ptr[a_index] = r_ptr[j];
++a_index;
}
}
}
Ref<MLPPVector> MLPPVector::flatten_vectorsn(const Vector<Ref<MLPPVector>> &A) const {
Ref<MLPPVector> a;
a.instance();
int vsize = 0;
for (int i = 0; i < A.size(); ++i) {
vsize += A[i]->size();
}
a->resize(vsize);
int a_index = 0;
real_t *a_ptr = a->ptrw();
for (int i = 0; i < A.size(); ++i) {
const Ref<MLPPVector> &r = A[i];
int r_size = r->size();
const real_t *r_ptr = r->ptr();
for (int j = 0; j < r_size; ++j) {
a_ptr[a_index] = r_ptr[j];
++a_index;
}
}
return a;
}
void MLPPVector::hadamard_product(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] * b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::hadamard_productn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] * b_ptr[i];
}
return out;
}
void MLPPVector::hadamard_productb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] * b_ptr[i];
}
}
void MLPPVector::element_wise_division(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
Ref<MLPPVector> out;
out.instance();
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] / b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::element_wise_divisionn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] / b_ptr[i];
}
return out;
}
void MLPPVector::element_wise_divisionb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
resize(s);
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] / b_ptr[i];
}
}
void MLPPVector::scalar_multiply(real_t scalar) {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = out_ptr[i] * scalar;
}
}
Ref<MLPPVector> MLPPVector::scalar_multiplyn(real_t scalar) const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] * scalar;
}
return out;
}
void MLPPVector::scalar_multiplyb(real_t scalar, const Ref<MLPPVector> &a) {
int s = a->size();
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] * scalar;
}
}
void MLPPVector::scalar_add(real_t scalar) {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = out_ptr[i] + scalar;
}
}
Ref<MLPPVector> MLPPVector::scalar_addn(real_t scalar) const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] + scalar;
}
return out;
}
void MLPPVector::scalar_addb(real_t scalar, const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] + scalar;
}
}
void MLPPVector::add(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] += b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::addn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] + b_ptr[i];
}
return out;
}
void MLPPVector::addb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] + b_ptr[i];
}
}
void MLPPVector::sub(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] -= b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::subn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] - b_ptr[i];
}
return out;
}
void MLPPVector::subb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] - b_ptr[i];
}
}
void MLPPVector::log() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::logn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log(a_ptr[i]);
}
return out;
}
void MLPPVector::logb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::log(a_ptr[i]);
}
}
void MLPPVector::log10() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log10(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::log10n() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log10(a_ptr[i]);
}
return out;
}
void MLPPVector::log10b(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::log10(a_ptr[i]);
}
}
void MLPPVector::exp() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::exp(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::expn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::exp(a_ptr[i]);
}
return out;
}
void MLPPVector::expb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::exp(a_ptr[i]);
}
}
void MLPPVector::erf() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::erf(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::erfn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::erf(a_ptr[i]);
}
return out;
}
void MLPPVector::erfb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::erf(a_ptr[i]);
}
}
void MLPPVector::exponentiate(real_t p) {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::pow(out_ptr[i], p);
}
}
Ref<MLPPVector> MLPPVector::exponentiaten(real_t p) const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
return out;
}
void MLPPVector::exponentiateb(const Ref<MLPPVector> &a, real_t p) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
}
void MLPPVector::sqrt() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sqrt(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::sqrtn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
return out;
}
void MLPPVector::sqrtb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
}
void MLPPVector::cbrt() {
return exponentiate(static_cast<real_t>(1) / static_cast<real_t>(3));
}
Ref<MLPPVector> MLPPVector::cbrtn() const {
return exponentiaten(static_cast<real_t>(1) / static_cast<real_t>(3));
}
void MLPPVector::cbrtb(const Ref<MLPPVector> &a) {
return exponentiateb(a, static_cast<real_t>(1) / static_cast<real_t>(3));
}
real_t MLPPVector::dot(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), 0);
ERR_FAIL_COND_V(_size != b->size(), 0);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t c = 0;
for (int i = 0; i < _size; ++i) {
c += a_ptr[i] * b_ptr[i];
}
return c;
}
/*
std::vector<real_t> MLPPVector::cross(std::vector<real_t> a, std::vector<real_t> b) {
// Cross products exist in R^7 also. Though, I will limit it to R^3 as Wolfram does this.
std::vector<std::vector<real_t>> mat = { onevec(3), a, b };
real_t det1 = det({ { a[1], a[2] }, { b[1], b[2] } }, 2);
real_t det2 = -det({ { a[0], a[2] }, { b[0], b[2] } }, 2);
real_t det3 = det({ { a[0], a[1] }, { b[0], b[1] } }, 2);
return { det1, det2, det3 };
}
*/
void MLPPVector::abs() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = ABS(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::absn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
return out;
}
void MLPPVector::absb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::zero_vec(int n) const {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(0);
return vec;
}
Ref<MLPPVector> MLPPVector::one_vec(int n) const {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(1);
return vec;
}
Ref<MLPPVector> MLPPVector::full_vec(int n, int k) const {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(k);
return vec;
}
void MLPPVector::sin() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sin(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::sinn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sin(a_ptr[i]);
}
return out;
}
void MLPPVector::sinb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::sin(a_ptr[i]);
}
}
void MLPPVector::cos() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sqrt(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::cosn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::cos(a_ptr[i]);
}
return out;
}
void MLPPVector::cosb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::cos(a_ptr[i]);
}
}
void MLPPVector::maxv(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i > bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
}
Ref<MLPPVector> MLPPVector::maxvn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i > bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
return out;
}
void MLPPVector::maxvb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i > bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
}
real_t MLPPVector::max_element() const {
const real_t *aa = ptr();
real_t max_element = -Math_INF;
for (int i = 0; i < _size; i++) {
real_t current_element = aa[i];
if (current_element > max_element) {
max_element = current_element;
}
}
return max_element;
}
real_t MLPPVector::min_element() const {
const real_t *aa = ptr();
real_t min_element = Math_INF;
for (int i = 0; i < _size; i++) {
real_t current_element = aa[i];
if (current_element > min_element) {
min_element = current_element;
}
}
return min_element;
}
/*
std::vector<std::vector<real_t>> MLPPVector::round(std::vector<std::vector<real_t>> A) {
std::vector<std::vector<real_t>> B;
B.resize(A.size());
for (uint32_t i = 0; i < B.size(); i++) {
B[i].resize(A[0].size());
}
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
B[i][j] = Math::round(A[i][j]);
}
}
return B;
}
*/
real_t MLPPVector::euclidean_distance(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), 0);
ERR_FAIL_COND_V(_size != b->size(), 0);
const real_t *aa = ptr();
const real_t *ba = b->ptr();
real_t dist = 0;
for (int i = 0; i < _size; i++) {
dist += (aa[i] - ba[i]) * (aa[i] - ba[i]);
}
return Math::sqrt(dist);
}
real_t MLPPVector::euclidean_distance_squared(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), 0);
ERR_FAIL_COND_V(_size != b->size(), 0);
const real_t *aa = ptr();
const real_t *ba = b->ptr();
real_t dist = 0;
for (int i = 0; i < _size; i++) {
dist += (aa[i] - ba[i]) * (aa[i] - ba[i]);
}
return dist;
}
/*
real_t MLPPVector::norm_2(std::vector<std::vector<real_t>> A) {
real_t sum = 0;
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
sum += A[i][j] * A[i][j];
}
}
return Math::sqrt(sum);
}
*/
real_t MLPPVector::norm_sq() const {
const real_t *a_ptr = ptr();
real_t n_sq = 0;
for (int i = 0; i < _size; ++i) {
n_sq += a_ptr[i] * a_ptr[i];
}
return n_sq;
}
real_t MLPPVector::sum_elements() const {
const real_t *a_ptr = ptr();
real_t sum = 0;
for (int i = 0; i < _size; ++i) {
sum += a_ptr[i];
}
return sum;
}
/*
real_t MLPPVector::cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b) {
return dot(a, b) / (norm_2(a) * norm_2(b));
}
*/
void MLPPVector::subtract_matrix_rows(const Ref<MLPPMatrix> &B) {
Size2i b_size = B->size();
ERR_FAIL_COND(b_size.x != size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
}
Ref<MLPPVector> MLPPVector::subtract_matrix_rowsn(const Ref<MLPPMatrix> &B) const {
Ref<MLPPVector> c = duplicate();
Size2i b_size = B->size();
ERR_FAIL_COND_V(b_size.x != c->size(), c);
const real_t *b_ptr = B->ptr();
real_t *c_ptr = c->ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
return c;
}
void MLPPVector::subtract_matrix_rowsb(const Ref<MLPPVector> &a, const Ref<MLPPMatrix> &B) {
Size2i b_size = B->size();
ERR_FAIL_COND(b_size.x != a->size());
set_from_mlpp_vector(a);
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
}
Ref<MLPPMatrix> MLPPVector::outer_product(const Ref<MLPPVector> &b) const {
Ref<MLPPMatrix> C;
C.instance();
Size2i sm = Size2i(b->size(), size());
C->resize(sm);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
for (int i = 0; i < sm.y; ++i) {
real_t curr_a = a_ptr[i];
for (int j = 0; j < sm.x; ++j) {
C->set_element(i, j, curr_a * b_ptr[j]);
}
}
return C;
}
Ref<MLPPMatrix> MLPPVector::diagnm() const {
Ref<MLPPMatrix> B;
B.instance();
B->resize(Size2i(_size, _size));
B->fill(0);
const real_t *a_ptr = ptr();
real_t *b_ptr = B->ptrw();
for (int i = 0; i < _size; ++i) {
b_ptr[B->calculate_index(i, i)] = a_ptr[i];
}
return B;
}
String MLPPVector::to_string() {
String str;
str += "[MLPPVector: ";
for (int x = 0; x < _size; ++x) {
str += String::num(_data[x]);
str += " ";
}
str += "]";
return str;
}
std::vector<real_t> MLPPVector::to_std_vector() const {
std::vector<real_t> ret;
ret.resize(size());
real_t *w = &ret[0];
memcpy(w, _data, sizeof(real_t) * _size);
return ret;
}
void MLPPVector::set_from_std_vector(const std::vector<real_t> &p_from) {
resize(p_from.size());
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
MLPPVector::MLPPVector(const std::vector<real_t> &p_from) {
_size = 0;
_data = NULL;
resize(p_from.size());
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
void MLPPVector::_bind_methods() {
ClassDB::bind_method(D_METHOD("push_back", "elem"), &MLPPVector::push_back);
ClassDB::bind_method(D_METHOD("add_mlpp_vector", "other"), &MLPPVector::push_back);
ClassDB::bind_method(D_METHOD("remove", "index"), &MLPPVector::remove);
ClassDB::bind_method(D_METHOD("remove_unordered", "index"), &MLPPVector::remove_unordered);
ClassDB::bind_method(D_METHOD("erase", "val"), &MLPPVector::erase);
ClassDB::bind_method(D_METHOD("erase_multiple_unordered", "val"), &MLPPVector::erase_multiple_unordered);
ClassDB::bind_method(D_METHOD("invert"), &MLPPVector::invert);
ClassDB::bind_method(D_METHOD("clear"), &MLPPVector::clear);
ClassDB::bind_method(D_METHOD("reset"), &MLPPVector::reset);
ClassDB::bind_method(D_METHOD("empty"), &MLPPVector::empty);
ClassDB::bind_method(D_METHOD("size"), &MLPPVector::size);
ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPVector::resize);
ClassDB::bind_method(D_METHOD("get_element", "index"), &MLPPVector::get_element);
ClassDB::bind_method(D_METHOD("set_element", "index", "val"), &MLPPVector::set_element);
ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPVector::fill);
ClassDB::bind_method(D_METHOD("insert", "pos", "val"), &MLPPVector::insert);
ClassDB::bind_method(D_METHOD("find", "val", "from"), &MLPPVector::find, 0);
ClassDB::bind_method(D_METHOD("sort"), &MLPPVector::sort);
ClassDB::bind_method(D_METHOD("ordered_insert", "val"), &MLPPVector::ordered_insert);
ClassDB::bind_method(D_METHOD("to_pool_vector"), &MLPPVector::to_pool_vector);
ClassDB::bind_method(D_METHOD("to_byte_array"), &MLPPVector::to_byte_array);
ClassDB::bind_method(D_METHOD("duplicate"), &MLPPVector::duplicate);
ClassDB::bind_method(D_METHOD("set_from_mlpp_vector", "from"), &MLPPVector::set_from_mlpp_vector);
ClassDB::bind_method(D_METHOD("set_from_pool_vector", "from"), &MLPPVector::set_from_pool_vector);
ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPVector::is_equal_approx, CMP_EPSILON);
ClassDB::bind_method(D_METHOD("hadamard_product", "b"), &MLPPVector::hadamard_product);
ClassDB::bind_method(D_METHOD("hadamard_productn", "b"), &MLPPVector::hadamard_productn);
ClassDB::bind_method(D_METHOD("hadamard_productb", "a", "b"), &MLPPVector::hadamard_productb);
ClassDB::bind_method(D_METHOD("element_wise_division", "b"), &MLPPVector::element_wise_division);
ClassDB::bind_method(D_METHOD("element_wise_divisionn", "b"), &MLPPVector::element_wise_divisionn);
ClassDB::bind_method(D_METHOD("element_wise_divisionb", "a", "b"), &MLPPVector::element_wise_divisionb);
ClassDB::bind_method(D_METHOD("scalar_multiply", "scalar"), &MLPPVector::scalar_multiply);
ClassDB::bind_method(D_METHOD("scalar_multiplyn", "scalar"), &MLPPVector::scalar_multiplyn);
ClassDB::bind_method(D_METHOD("scalar_multiplyb", "scalar", "a"), &MLPPVector::scalar_multiplyb);
ClassDB::bind_method(D_METHOD("scalar_add", "scalar"), &MLPPVector::scalar_add);
ClassDB::bind_method(D_METHOD("scalar_addn", "scalar"), &MLPPVector::scalar_addn);
ClassDB::bind_method(D_METHOD("scalar_addb", "scalar", "a"), &MLPPVector::scalar_addb);
ClassDB::bind_method(D_METHOD("add", "b"), &MLPPVector::add);
ClassDB::bind_method(D_METHOD("addn", "b"), &MLPPVector::addn);
ClassDB::bind_method(D_METHOD("addb", "a", "b"), &MLPPVector::addb);
ClassDB::bind_method(D_METHOD("sub", "b"), &MLPPVector::sub);
ClassDB::bind_method(D_METHOD("subn", "b"), &MLPPVector::subn);
ClassDB::bind_method(D_METHOD("subb", "a", "b"), &MLPPVector::subb);
ClassDB::bind_method(D_METHOD("log"), &MLPPVector::log);
ClassDB::bind_method(D_METHOD("logn"), &MLPPVector::logn);
ClassDB::bind_method(D_METHOD("logb", "a"), &MLPPVector::logb);
ClassDB::bind_method(D_METHOD("log10"), &MLPPVector::log10);
ClassDB::bind_method(D_METHOD("log10n"), &MLPPVector::log10n);
ClassDB::bind_method(D_METHOD("log10b", "a"), &MLPPVector::log10b);
ClassDB::bind_method(D_METHOD("exp"), &MLPPVector::exp);
ClassDB::bind_method(D_METHOD("expn"), &MLPPVector::expn);
ClassDB::bind_method(D_METHOD("expb", "a"), &MLPPVector::expb);
ClassDB::bind_method(D_METHOD("erf"), &MLPPVector::erf);
ClassDB::bind_method(D_METHOD("erfn"), &MLPPVector::erfn);
ClassDB::bind_method(D_METHOD("erfb", "a"), &MLPPVector::erfb);
ClassDB::bind_method(D_METHOD("exponentiate", "p"), &MLPPVector::exponentiate);
ClassDB::bind_method(D_METHOD("exponentiaten", "p"), &MLPPVector::exponentiaten);
ClassDB::bind_method(D_METHOD("exponentiateb", "a", "p"), &MLPPVector::exponentiateb);
ClassDB::bind_method(D_METHOD("sqrt"), &MLPPVector::sqrt);
ClassDB::bind_method(D_METHOD("sqrtn"), &MLPPVector::sqrtn);
ClassDB::bind_method(D_METHOD("sqrtb", "a"), &MLPPVector::sqrtb);
ClassDB::bind_method(D_METHOD("cbrt"), &MLPPVector::cbrt);
ClassDB::bind_method(D_METHOD("cbrtn"), &MLPPVector::cbrtn);
ClassDB::bind_method(D_METHOD("cbrtb", "a"), &MLPPVector::cbrtb);
ClassDB::bind_method(D_METHOD("dot", "b"), &MLPPVector::dot);
ClassDB::bind_method(D_METHOD("abs"), &MLPPVector::abs);
ClassDB::bind_method(D_METHOD("absn"), &MLPPVector::absn);
ClassDB::bind_method(D_METHOD("absb", "a"), &MLPPVector::absb);
ClassDB::bind_method(D_METHOD("zero_vec", "n"), &MLPPVector::zero_vec);
ClassDB::bind_method(D_METHOD("one_vec", "n"), &MLPPVector::one_vec);
ClassDB::bind_method(D_METHOD("full_vec", "n", "k"), &MLPPVector::full_vec);
ClassDB::bind_method(D_METHOD("sin"), &MLPPVector::sin);
ClassDB::bind_method(D_METHOD("sinn"), &MLPPVector::sinn);
ClassDB::bind_method(D_METHOD("sinb", "a"), &MLPPVector::sinb);
ClassDB::bind_method(D_METHOD("cos"), &MLPPVector::cos);
ClassDB::bind_method(D_METHOD("cosn"), &MLPPVector::cosn);
ClassDB::bind_method(D_METHOD("cosb", "a"), &MLPPVector::cosb);
ClassDB::bind_method(D_METHOD("maxv", "b"), &MLPPVector::maxv);
ClassDB::bind_method(D_METHOD("maxvn", "b"), &MLPPVector::maxvn);
ClassDB::bind_method(D_METHOD("maxvb", "a", "b"), &MLPPVector::maxvb);
ClassDB::bind_method(D_METHOD("max_element"), &MLPPVector::max_element);
ClassDB::bind_method(D_METHOD("min_element"), &MLPPVector::min_element);
ClassDB::bind_method(D_METHOD("euclidean_distance", "b"), &MLPPVector::euclidean_distance);
ClassDB::bind_method(D_METHOD("euclidean_distance_squared", "b"), &MLPPVector::euclidean_distance_squared);
ClassDB::bind_method(D_METHOD("norm_sq"), &MLPPVector::norm_sq);
ClassDB::bind_method(D_METHOD("sum_elements"), &MLPPVector::sum_elements);
ClassDB::bind_method(D_METHOD("subtract_matrix_rows", "B"), &MLPPVector::subtract_matrix_rows);
ClassDB::bind_method(D_METHOD("subtract_matrix_rowsn", "B"), &MLPPVector::subtract_matrix_rowsn);
ClassDB::bind_method(D_METHOD("subtract_matrix_rowsb", "a", "B"), &MLPPVector::subtract_matrix_rowsb);
ClassDB::bind_method(D_METHOD("outer_product", "b"), &MLPPVector::outer_product);
ClassDB::bind_method(D_METHOD("diagnm"), &MLPPVector::diagnm);
}