mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-06 17:09:36 +01:00
732 lines
18 KiB
C++
732 lines
18 KiB
C++
//
|
|
// KMeans.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "kmeans.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include "core/math/random_pcg.h"
|
|
|
|
#include <climits>
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
Ref<MLPPMatrix> MLPPKMeans::get_input_set() {
|
|
return _input_set;
|
|
}
|
|
void MLPPKMeans::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
_input_set = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
int MLPPKMeans::get_k() {
|
|
return _k;
|
|
}
|
|
void MLPPKMeans::set_k(const int val) {
|
|
_k = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPKMeans::MeanType MLPPKMeans::get_mean_type() {
|
|
return _mean_type;
|
|
}
|
|
void MLPPKMeans::set_mean_type(const MLPPKMeans::MeanType val) {
|
|
_mean_type = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
void MLPPKMeans::initialize() {
|
|
ERR_FAIL_COND(!_input_set.is_valid());
|
|
|
|
if (_mean_type == MEAN_TYPE_KMEANSPP) {
|
|
_kmeanspp_initialization();
|
|
} else {
|
|
_centroid_initialization();
|
|
}
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPKMeans::model_set_test(const Ref<MLPPMatrix> &X) {
|
|
ERR_FAIL_COND_V(!X.is_valid(), Ref<MLPPMatrix>());
|
|
ERR_FAIL_COND_V(!_initialized, Ref<MLPPMatrix>());
|
|
|
|
int input_set_size_y = _input_set->size().y;
|
|
|
|
Ref<MLPPMatrix> closest_centroids;
|
|
closest_centroids.instance();
|
|
closest_centroids->resize(Size2i(_mu->size().x, input_set_size_y));
|
|
|
|
Ref<MLPPVector> closest_centroid;
|
|
closest_centroid.instance();
|
|
closest_centroid->resize(_mu->size().x);
|
|
|
|
Ref<MLPPVector> tmp_xiv;
|
|
tmp_xiv.instance();
|
|
tmp_xiv->resize(X->size().x);
|
|
|
|
Ref<MLPPVector> tmp_mujv;
|
|
tmp_mujv.instance();
|
|
tmp_mujv->resize(_mu->size().x);
|
|
|
|
int r0_size = _r->size().x;
|
|
|
|
for (int i = 0; i < input_set_size_y; ++i) {
|
|
_mu->row_get_into_mlpp_vector(0, closest_centroid);
|
|
X->row_get_into_mlpp_vector(i, tmp_xiv);
|
|
|
|
for (int j = 0; j < r0_size; ++j) {
|
|
_mu->row_get_into_mlpp_vector(j, tmp_mujv);
|
|
|
|
bool is_centroid_closer = tmp_xiv->euclidean_distance(tmp_mujv) < tmp_xiv->euclidean_distance(closest_centroid);
|
|
|
|
if (is_centroid_closer) {
|
|
closest_centroid->set_from_mlpp_vector(tmp_mujv);
|
|
}
|
|
}
|
|
|
|
closest_centroids->row_set_mlpp_vector(i, closest_centroid);
|
|
}
|
|
|
|
return closest_centroids;
|
|
}
|
|
Ref<MLPPVector> MLPPKMeans::model_test(const Ref<MLPPVector> &x) {
|
|
ERR_FAIL_COND_V(!x.is_valid(), Ref<MLPPVector>());
|
|
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
|
|
|
|
Ref<MLPPVector> closest_centroid;
|
|
closest_centroid.instance();
|
|
closest_centroid->resize(_mu->size().x);
|
|
|
|
_mu->row_get_into_mlpp_vector(0, closest_centroid);
|
|
|
|
int mu_size_y = _mu->size().y;
|
|
|
|
Ref<MLPPVector> tmp_mujv;
|
|
tmp_mujv.instance();
|
|
tmp_mujv->resize(_mu->size().x);
|
|
|
|
for (int j = 0; j < mu_size_y; ++j) {
|
|
_mu->row_get_into_mlpp_vector(j, tmp_mujv);
|
|
|
|
if (x->euclidean_distance(tmp_mujv) < x->euclidean_distance(closest_centroid)) {
|
|
closest_centroid->set_from_mlpp_vector(tmp_mujv);
|
|
}
|
|
}
|
|
|
|
return closest_centroid;
|
|
}
|
|
void MLPPKMeans::train(int epoch_num, bool UI) {
|
|
ERR_FAIL_COND(!_input_set.is_valid());
|
|
|
|
if (!_initialized) {
|
|
initialize();
|
|
}
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
_evaluate();
|
|
|
|
while (true) {
|
|
// STEPS OF THE ALGORITHM
|
|
// 1. DETERMINE r_nk
|
|
// 2. DETERMINE J
|
|
// 3. DETERMINE mu_k
|
|
|
|
// STOP IF CONVERGED, ELSE REPEAT
|
|
|
|
cost_prev = _cost();
|
|
|
|
_compute_mu();
|
|
_evaluate();
|
|
|
|
// UI PORTION
|
|
if (UI) {
|
|
MLPPUtilities::cost_info(epoch, cost_prev, _cost());
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > epoch_num) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t MLPPKMeans::score() {
|
|
return _cost();
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPKMeans::silhouette_scores() {
|
|
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
|
|
|
|
Ref<MLPPMatrix> closest_centroids = model_set_test(_input_set);
|
|
|
|
ERR_FAIL_COND_V(!closest_centroids.is_valid(), Ref<MLPPVector>());
|
|
|
|
int input_set_size_y = _input_set->size().y;
|
|
int input_set_size_x = _input_set->size().x;
|
|
|
|
int mu_size_y = _mu->size().y;
|
|
|
|
int closest_centroids_size_y = closest_centroids->size().y;
|
|
|
|
Ref<MLPPVector> silhouette_scores;
|
|
silhouette_scores.instance();
|
|
silhouette_scores->resize(input_set_size_y);
|
|
|
|
Ref<MLPPVector> input_set_i_tempv;
|
|
input_set_i_tempv.instance();
|
|
input_set_i_tempv->resize(input_set_size_x);
|
|
|
|
Ref<MLPPVector> input_set_j_tempv;
|
|
input_set_j_tempv.instance();
|
|
input_set_j_tempv->resize(input_set_size_x);
|
|
|
|
Ref<MLPPVector> input_set_k_tempv;
|
|
input_set_k_tempv.instance();
|
|
input_set_k_tempv->resize(input_set_size_x);
|
|
|
|
Ref<MLPPVector> r_i_tempv;
|
|
r_i_tempv.instance();
|
|
r_i_tempv->resize(_r->size().x);
|
|
|
|
Ref<MLPPVector> r_j_tempv;
|
|
r_j_tempv.instance();
|
|
r_j_tempv->resize(_r->size().x);
|
|
|
|
Ref<MLPPVector> closest_centroids_i_tempv;
|
|
closest_centroids_i_tempv.instance();
|
|
closest_centroids_i_tempv->resize(closest_centroids->size().x);
|
|
|
|
Ref<MLPPVector> closest_centroids_k_tempv;
|
|
closest_centroids_k_tempv.instance();
|
|
closest_centroids_k_tempv->resize(closest_centroids->size().x);
|
|
|
|
Ref<MLPPVector> mu_j_tempv;
|
|
mu_j_tempv.instance();
|
|
mu_j_tempv->resize(_mu->size().x);
|
|
|
|
for (int i = 0; i < input_set_size_y; ++i) {
|
|
_r->row_get_into_mlpp_vector(i, r_i_tempv);
|
|
_input_set->row_get_into_mlpp_vector(i, input_set_i_tempv);
|
|
|
|
// COMPUTING a[i]
|
|
real_t a = 0;
|
|
for (int j = 0; j < input_set_size_y; ++j) {
|
|
if (i == j) {
|
|
continue;
|
|
}
|
|
|
|
_r->row_get_into_mlpp_vector(j, r_j_tempv);
|
|
|
|
if (r_i_tempv->is_equal_approx(r_j_tempv)) {
|
|
_input_set->row_get_into_mlpp_vector(j, input_set_j_tempv);
|
|
|
|
a += input_set_i_tempv->euclidean_distance(input_set_j_tempv);
|
|
}
|
|
}
|
|
|
|
// NORMALIZE a[i]
|
|
a /= closest_centroids->size().x - 1;
|
|
|
|
closest_centroids->row_get_into_mlpp_vector(i, closest_centroids_i_tempv);
|
|
|
|
// COMPUTING b[i]
|
|
real_t b = Math_INF;
|
|
for (int j = 0; j < mu_size_y; ++j) {
|
|
_mu->row_get_into_mlpp_vector(j, mu_j_tempv);
|
|
|
|
if (!closest_centroids_i_tempv->is_equal_approx(mu_j_tempv)) {
|
|
real_t sum = 0;
|
|
for (int k = 0; k < input_set_size_y; ++k) {
|
|
_input_set->row_get_into_mlpp_vector(k, input_set_k_tempv);
|
|
|
|
sum += input_set_i_tempv->euclidean_distance(input_set_k_tempv);
|
|
}
|
|
|
|
// NORMALIZE b[i]
|
|
real_t k_cluster_size = 0;
|
|
for (int k = 0; k < closest_centroids_size_y; ++k) {
|
|
_input_set->row_get_into_mlpp_vector(k, closest_centroids_k_tempv);
|
|
|
|
if (closest_centroids_k_tempv->is_equal_approx(mu_j_tempv)) {
|
|
++k_cluster_size;
|
|
}
|
|
}
|
|
|
|
if (sum / k_cluster_size < b) {
|
|
b = sum / k_cluster_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
silhouette_scores->element_set(i, (b - a) / fmax(a, b));
|
|
|
|
// Or the expanded version:
|
|
// if(a < b) {
|
|
// silhouette_scores->element_set(i, 1 - a/b);
|
|
// }
|
|
// else if(a == b){
|
|
// silhouette_scores->element_set(i, 0);
|
|
// }
|
|
// else{
|
|
// silhouette_scores->element_set(i, b/a - 1);
|
|
// }
|
|
}
|
|
|
|
return silhouette_scores;
|
|
}
|
|
|
|
MLPPKMeans::MLPPKMeans() {
|
|
_mu.instance();
|
|
_r.instance();
|
|
|
|
_accuracy_threshold = 0;
|
|
_k = 0;
|
|
_initialized = false;
|
|
|
|
_mean_type = MEAN_TYPE_CENTROID;
|
|
}
|
|
MLPPKMeans::~MLPPKMeans() {
|
|
}
|
|
|
|
// This simply computes r_nk
|
|
void MLPPKMeans::_evaluate() {
|
|
ERR_FAIL_COND(!_initialized);
|
|
|
|
if (_r->size() != Size2i(_k, _input_set->size().y)) {
|
|
_r->resize(Size2i(_k, _input_set->size().y));
|
|
}
|
|
|
|
int r_size_y = _r->size().y;
|
|
int r_size_x = _r->size().x;
|
|
|
|
Ref<MLPPVector> closest_centroid;
|
|
closest_centroid.instance();
|
|
closest_centroid->resize(_mu->size().x);
|
|
|
|
Ref<MLPPVector> input_set_i_tempv;
|
|
input_set_i_tempv.instance();
|
|
input_set_i_tempv->resize(_input_set->size().x);
|
|
|
|
Ref<MLPPVector> mu_j_tempv;
|
|
mu_j_tempv.instance();
|
|
mu_j_tempv->resize(_mu->size().x);
|
|
|
|
real_t closest_centroid_current_dist = 0;
|
|
int closest_centroid_index = 0;
|
|
|
|
_r->fill(0);
|
|
|
|
for (int i = 0; i < r_size_y; ++i) {
|
|
_mu->row_get_into_mlpp_vector(0, closest_centroid);
|
|
_input_set->row_get_into_mlpp_vector(i, input_set_i_tempv);
|
|
|
|
closest_centroid_current_dist = input_set_i_tempv->euclidean_distance(closest_centroid);
|
|
|
|
for (int j = 0; j < r_size_x; ++j) {
|
|
_mu->row_get_into_mlpp_vector(j, mu_j_tempv);
|
|
|
|
bool is_centroid_closer = input_set_i_tempv->euclidean_distance(mu_j_tempv) < closest_centroid_current_dist;
|
|
|
|
if (is_centroid_closer) {
|
|
_mu->row_get_into_mlpp_vector(j, closest_centroid);
|
|
closest_centroid_current_dist = input_set_i_tempv->euclidean_distance(closest_centroid);
|
|
closest_centroid_index = j;
|
|
}
|
|
}
|
|
|
|
_r->element_set(i, closest_centroid_index, 1);
|
|
}
|
|
}
|
|
|
|
// This simply computes or re-computes mu_k
|
|
void MLPPKMeans::_compute_mu() {
|
|
int mu_size_y = _mu->size().y;
|
|
int r_size_y = _r->size().y;
|
|
|
|
Ref<MLPPVector> num;
|
|
num.instance();
|
|
num->resize(_r->size().x);
|
|
|
|
Ref<MLPPVector> input_set_j_tempv;
|
|
input_set_j_tempv.instance();
|
|
input_set_j_tempv->resize(_input_set->size().x);
|
|
|
|
Ref<MLPPVector> mat_tempv;
|
|
mat_tempv.instance();
|
|
mat_tempv->resize(_input_set->size().x);
|
|
|
|
Ref<MLPPVector> mu_tempv;
|
|
mu_tempv.instance();
|
|
mu_tempv->resize(_mu->size().x);
|
|
|
|
for (int i = 0; i < mu_size_y; ++i) {
|
|
num->fill(0);
|
|
|
|
real_t den = 0;
|
|
for (int j = 0; j < r_size_y; ++j) {
|
|
_input_set->row_get_into_mlpp_vector(j, input_set_j_tempv);
|
|
|
|
real_t r_j_i = _r->element_get(j, i);
|
|
|
|
mat_tempv->scalar_multiplyb(_r->element_get(j, i), input_set_j_tempv);
|
|
num->add(mat_tempv);
|
|
|
|
den += r_j_i;
|
|
}
|
|
|
|
mu_tempv->scalar_multiplyb(real_t(1) / real_t(den), num);
|
|
|
|
_mu->row_set_mlpp_vector(i, mu_tempv);
|
|
}
|
|
}
|
|
|
|
void MLPPKMeans::_centroid_initialization() {
|
|
RandomPCG rand;
|
|
rand.randomize();
|
|
|
|
Size2i mu_size = Size2i(_input_set->size().x, _k);
|
|
|
|
if (_mu->size() != mu_size) {
|
|
_mu->resize(mu_size);
|
|
}
|
|
|
|
Ref<MLPPVector> mu_tempv;
|
|
mu_tempv.instance();
|
|
mu_tempv->resize(_mu->size().x);
|
|
|
|
int input_set_size_y_rand = _input_set->size().y - 1;
|
|
|
|
for (int i = 0; i < _k; ++i) {
|
|
int indx = rand.random(0, input_set_size_y_rand);
|
|
|
|
_input_set->row_get_into_mlpp_vector(indx, mu_tempv);
|
|
_mu->row_set_mlpp_vector(i, mu_tempv);
|
|
}
|
|
}
|
|
|
|
void MLPPKMeans::_kmeanspp_initialization() {
|
|
RandomPCG rand;
|
|
rand.randomize();
|
|
|
|
Size2i mu_size = Size2i(_input_set->size().x, _k);
|
|
|
|
if (_mu->size() != mu_size) {
|
|
_mu->resize(mu_size);
|
|
}
|
|
|
|
int input_set_size_y = _input_set->size().y;
|
|
|
|
Ref<MLPPVector> mu_tempv;
|
|
mu_tempv.instance();
|
|
mu_tempv->resize(_mu->size().x);
|
|
|
|
_input_set->row_get_into_mlpp_vector(rand.random(0, input_set_size_y - 1), mu_tempv);
|
|
_mu->row_set_mlpp_vector(0, mu_tempv);
|
|
|
|
Ref<MLPPVector> input_set_j_tempv;
|
|
input_set_j_tempv.instance();
|
|
input_set_j_tempv->resize(_input_set->size().x);
|
|
|
|
Ref<MLPPVector> farthest_centroid;
|
|
farthest_centroid.instance();
|
|
farthest_centroid->resize(_input_set->size().x);
|
|
|
|
for (int i = 1; i < _k - 1; ++i) {
|
|
for (int j = 0; j < input_set_size_y; ++j) {
|
|
_input_set->row_get_into_mlpp_vector(j, input_set_j_tempv);
|
|
|
|
real_t max_dist = 0;
|
|
// SUM ALL THE SQUARED DISTANCES, CHOOSE THE ONE THAT'S FARTHEST
|
|
// AS TO SPREAD OUT THE CLUSTER CENTROIDS.
|
|
real_t sum = 0;
|
|
for (int k = 0; k < i; k++) {
|
|
_mu->row_get_into_mlpp_vector(k, mu_tempv);
|
|
|
|
sum += input_set_j_tempv->euclidean_distance(mu_tempv);
|
|
}
|
|
|
|
if (sum * sum > max_dist) {
|
|
farthest_centroid->set_from_mlpp_vector(input_set_j_tempv);
|
|
max_dist = sum * sum;
|
|
}
|
|
}
|
|
|
|
_mu->row_set_mlpp_vector(i, farthest_centroid);
|
|
}
|
|
}
|
|
real_t MLPPKMeans::_cost() {
|
|
ERR_FAIL_COND_V(!_initialized, 0);
|
|
|
|
Ref<MLPPVector> input_set_i_tempv;
|
|
input_set_i_tempv.instance();
|
|
input_set_i_tempv->resize(_input_set->size().x);
|
|
|
|
Ref<MLPPVector> mu_j_tempv;
|
|
mu_j_tempv.instance();
|
|
mu_j_tempv->resize(_mu->size().x);
|
|
|
|
Ref<MLPPVector> sub_tempv;
|
|
sub_tempv.instance();
|
|
sub_tempv->resize(_input_set->size().x);
|
|
|
|
int r_size_y = _r->size().y;
|
|
int r_size_x = _r->size().x;
|
|
|
|
real_t sum = 0;
|
|
for (int i = 0; i < r_size_y; i++) {
|
|
_input_set->row_get_into_mlpp_vector(i, input_set_i_tempv);
|
|
|
|
for (int j = 0; j < r_size_x; j++) {
|
|
_mu->row_get_into_mlpp_vector(j, mu_j_tempv);
|
|
|
|
sub_tempv->subb(input_set_i_tempv, mu_j_tempv);
|
|
sum += _r->element_get(i, j) * sub_tempv->norm_sq();
|
|
}
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
void MLPPKMeans::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPKMeans::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPKMeans::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_k"), &MLPPKMeans::get_k);
|
|
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPKMeans::set_k);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_mean_type"), &MLPPKMeans::get_mean_type);
|
|
ClassDB::bind_method(D_METHOD("set_mean_type", "value"), &MLPPKMeans::set_mean_type);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "mean_type", PROPERTY_HINT_ENUM, "Centroid,KMeansPP"), "set_mean_type", "get_mean_type");
|
|
|
|
ClassDB::bind_method(D_METHOD("initialize"), &MLPPKMeans::initialize);
|
|
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPKMeans::model_set_test);
|
|
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPKMeans::model_test);
|
|
ClassDB::bind_method(D_METHOD("train", "epoch_num", "UI"), &MLPPKMeans::train, false);
|
|
ClassDB::bind_method(D_METHOD("score"), &MLPPKMeans::score);
|
|
ClassDB::bind_method(D_METHOD("silhouette_scores"), &MLPPKMeans::silhouette_scores);
|
|
|
|
BIND_ENUM_CONSTANT(MEAN_TYPE_CENTROID);
|
|
BIND_ENUM_CONSTANT(MEAN_TYPE_KMEANSPP);
|
|
}
|
|
|
|
/*
|
|
std::vector<std::vector<real_t>> MLPPKMeans::modelSetTest(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> closestCentroids;
|
|
for (int i = 0; i < inputSet.size(); i++) {
|
|
std::vector<real_t> closestCentroid = mu[0];
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
bool isCentroidCloser = alg.euclideanDistance(X[i], mu[j]) < alg.euclideanDistance(X[i], closestCentroid);
|
|
if (isCentroidCloser) {
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
closestCentroids.push_back(closestCentroid);
|
|
}
|
|
return closestCentroids;
|
|
}
|
|
|
|
std::vector<real_t> MLPPKMeans::modelTest(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
std::vector<real_t> closestCentroid = mu[0];
|
|
for (int j = 0; j < mu.size(); j++) {
|
|
if (alg.euclideanDistance(x, mu[j]) < alg.euclideanDistance(x, closestCentroid)) {
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
return closestCentroid;
|
|
}
|
|
|
|
void MLPPKMeans::train(int epoch_num, bool UI) {
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
Evaluate();
|
|
|
|
while (true) {
|
|
// STEPS OF THE ALGORITHM
|
|
// 1. DETERMINE r_nk
|
|
// 2. DETERMINE J
|
|
// 3. DETERMINE mu_k
|
|
|
|
// STOP IF CONVERGED, ELSE REPEAT
|
|
|
|
cost_prev = Cost();
|
|
|
|
computeMu();
|
|
Evaluate();
|
|
|
|
// UI PORTION
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost());
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > epoch_num) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t MLPPKMeans::score() {
|
|
return Cost();
|
|
}
|
|
|
|
std::vector<real_t> MLPPKMeans::silhouette_scores() {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<real_t>> closestCentroids = modelSetTest(inputSet);
|
|
std::vector<real_t> silhouette_scores;
|
|
for (int i = 0; i < inputSet.size(); i++) {
|
|
// COMPUTING a[i]
|
|
real_t a = 0;
|
|
for (int j = 0; j < inputSet.size(); j++) {
|
|
if (i != j && r[i] == r[j]) {
|
|
a += alg.euclideanDistance(inputSet[i], inputSet[j]);
|
|
}
|
|
}
|
|
// NORMALIZE a[i]
|
|
a /= closestCentroids[i].size() - 1;
|
|
|
|
// COMPUTING b[i]
|
|
real_t b = INT_MAX;
|
|
for (int j = 0; j < mu.size(); j++) {
|
|
if (closestCentroids[i] != mu[j]) {
|
|
real_t sum = 0;
|
|
for (int k = 0; k < inputSet.size(); k++) {
|
|
sum += alg.euclideanDistance(inputSet[i], inputSet[k]);
|
|
}
|
|
// NORMALIZE b[i]
|
|
real_t k_clusterSize = 0;
|
|
for (int k = 0; k < closestCentroids.size(); k++) {
|
|
if (closestCentroids[k] == mu[j]) {
|
|
k_clusterSize++;
|
|
}
|
|
}
|
|
if (sum / k_clusterSize < b) {
|
|
b = sum / k_clusterSize;
|
|
}
|
|
}
|
|
}
|
|
silhouette_scores.push_back((b - a) / fmax(a, b));
|
|
// Or the expanded version:
|
|
// if(a < b) {
|
|
// silhouette_scores.push_back(1 - a/b);
|
|
// }
|
|
// else if(a == b){
|
|
// silhouette_scores.push_back(0);
|
|
// }
|
|
// else{
|
|
// silhouette_scores.push_back(b/a - 1);
|
|
// }
|
|
}
|
|
return silhouette_scores;
|
|
}
|
|
|
|
// This simply computes r_nk
|
|
void MLPPKMeans::Evaluate() {
|
|
MLPPLinAlg alg;
|
|
r.resize(inputSet.size());
|
|
|
|
for (int i = 0; i < r.size(); i++) {
|
|
r[i].resize(k);
|
|
}
|
|
|
|
for (int i = 0; i < r.size(); i++) {
|
|
std::vector<real_t> closestCentroid = mu[0];
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
bool isCentroidCloser = alg.euclideanDistance(inputSet[i], mu[j]) < alg.euclideanDistance(inputSet[i], closestCentroid);
|
|
if (isCentroidCloser) {
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
if (mu[j] == closestCentroid) {
|
|
r[i][j] = 1;
|
|
} else {
|
|
r[i][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This simply computes or re-computes mu_k
|
|
void MLPPKMeans::computeMu() {
|
|
MLPPLinAlg alg;
|
|
for (int i = 0; i < mu.size(); i++) {
|
|
std::vector<real_t> num;
|
|
num.resize(r.size());
|
|
|
|
for (int i = 0; i < num.size(); i++) {
|
|
num[i] = 0;
|
|
}
|
|
|
|
real_t den = 0;
|
|
for (int j = 0; j < r.size(); j++) {
|
|
num = alg.addition(num, alg.scalarMultiply(r[j][i], inputSet[j]));
|
|
}
|
|
for (int j = 0; j < r.size(); j++) {
|
|
den += r[j][i];
|
|
}
|
|
mu[i] = alg.scalarMultiply(real_t(1) / real_t(den), num);
|
|
}
|
|
}
|
|
|
|
void MLPPKMeans::centroidInitialization(int k) {
|
|
mu.resize(k);
|
|
|
|
for (int i = 0; i < k; i++) {
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(inputSet.size() - 1));
|
|
|
|
mu[i].resize(inputSet.size());
|
|
mu[i] = inputSet[distribution(generator)];
|
|
}
|
|
}
|
|
|
|
void MLPPKMeans::kmeansppInitialization(int k) {
|
|
MLPPLinAlg alg;
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(inputSet.size() - 1));
|
|
mu.push_back(inputSet[distribution(generator)]);
|
|
|
|
for (int i = 0; i < k - 1; i++) {
|
|
std::vector<real_t> farthestCentroid;
|
|
for (int j = 0; j < inputSet.size(); j++) {
|
|
real_t max_dist = 0;
|
|
// SUM ALL THE SQUARED DISTANCES, CHOOSE THE ONE THAT'S FARTHEST
|
|
// AS TO SPREAD OUT THE CLUSTER CENTROIDS.
|
|
real_t sum = 0;
|
|
for (int k = 0; k < mu.size(); k++) {
|
|
sum += alg.euclideanDistance(inputSet[j], mu[k]);
|
|
}
|
|
if (sum * sum > max_dist) {
|
|
farthestCentroid = inputSet[j];
|
|
max_dist = sum * sum;
|
|
}
|
|
}
|
|
mu.push_back(farthestCentroid);
|
|
}
|
|
}
|
|
|
|
real_t MLPPKMeans::Cost() {
|
|
MLPPLinAlg alg;
|
|
real_t sum = 0;
|
|
for (int i = 0; i < r.size(); i++) {
|
|
for (int j = 0; j < r[0].size(); j++) {
|
|
sum += r[i][j] * alg.norm_sq(alg.subtraction(inputSet[i], mu[j]));
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
*/ |