1
0
mirror of https://github.com/Relintai/pmlpp.git synced 2025-01-12 18:01:10 +01:00
pmlpp/mlpp/gan/gan.h

85 lines
2.7 KiB
C++

#ifndef MLPP_GAN_H
#define MLPP_GAN_H
//
// GAN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "../hidden_layer/hidden_layer.h"
#include "../output_layer/output_layer.h"
#include "../activation/activation.h"
#include "../utilities/utilities.h"
class MLPPGAN : public Reference {
GDCLASS(MLPPGAN, Reference);
public:
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
int get_k();
void set_k(const int val);
*/
Ref<MLPPMatrix> generate_example(int n);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
real_t score();
void save(const String &file_name);
void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5);
void add_output_layer(MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5);
MLPPGAN(real_t k, const Ref<MLPPMatrix> &output_set);
MLPPGAN();
~MLPPGAN();
protected:
Ref<MLPPMatrix> model_set_test_generator(const Ref<MLPPMatrix> &X); // Evaluator for the generator of the gan.
Ref<MLPPVector> model_set_test_discriminator(const Ref<MLPPMatrix> &X); // Evaluator for the discriminator of the gan.
real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
void forward_pass();
void update_discriminator_parameters(const Vector<Ref<MLPPMatrix>> &hidden_layer_updations, const Ref<MLPPVector> &output_layer_updation, real_t learning_rate);
void update_generator_parameters(const Vector<Ref<MLPPMatrix>> &hidden_layer_updations, real_t learning_rate);
struct ComputeDiscriminatorGradientsResult {
Vector<Ref<MLPPMatrix>> cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads.
Ref<MLPPVector> output_w_grad;
};
ComputeDiscriminatorGradientsResult compute_discriminator_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set);
Vector<Ref<MLPPMatrix>> compute_generator_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set);
void print_ui(int epoch, real_t cost_prev, const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set);
static void _bind_methods();
Ref<MLPPMatrix> _output_set;
Ref<MLPPVector> _y_hat;
Vector<Ref<MLPPHiddenLayer>> _network;
Ref<MLPPOutputLayer> _output_layer;
int _n;
int _k;
};
#endif /* GAN_hpp */