pmlpp/mlpp/softmax_reg/softmax_reg.cpp

192 lines
5.6 KiB
C++

//
// SoftmaxReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "softmax_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPSoftmaxReg::MLPPSoftmaxReg(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet, std::string reg, double lambda, double alpha) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_class(outputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k, n_class);
bias = MLPPUtilities::biasInitialization(n_class);
}
std::vector<double> MLPPSoftmaxReg::modelTest(std::vector<double> x) {
return Evaluate(x);
}
std::vector<std::vector<double>> MLPPSoftmaxReg::modelSetTest(std::vector<std::vector<double>> X) {
return Evaluate(X);
}
void MLPPSoftmaxReg::gradientDescent(double learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
double cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<std::vector<double>> error = alg.subtraction(y_hat, outputSet);
//Calculating the weight gradients
std::vector<std::vector<double>> w_gradient = alg.matmult(alg.transpose(inputSet), error);
//Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
//double b_gradient = alg.sum_elements(error);
// Bias Updation
bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error));
forwardPass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPSoftmaxReg::SGD(double learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
double cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
double outputIndex = distribution(generator);
std::vector<double> y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
// Calculating the weight gradients
std::vector<std::vector<double>> w_gradient = alg.outerProduct(inputSet[outputIndex], alg.subtraction(y_hat, outputSet[outputIndex]));
// Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
std::vector<double> b_gradient = alg.subtraction(y_hat, outputSet[outputIndex]);
// Bias updation
bias = alg.subtraction(bias, alg.scalarMultiply(learning_rate, b_gradient));
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPSoftmaxReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
double cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<std::vector<double>> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<std::vector<double>> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<std::vector<double>> w_gradient = alg.matmult(alg.transpose(inputMiniBatches[i]), error);
//Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error));
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
double MLPPSoftmaxReg::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPSoftmaxReg::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
}
double MLPPSoftmaxReg::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<double> MLPPSoftmaxReg::Evaluate(std::vector<double> x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.softmax(alg.addition(bias, alg.mat_vec_mult(alg.transpose(weights), x)));
}
std::vector<std::vector<double>> MLPPSoftmaxReg::Evaluate(std::vector<std::vector<double>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.softmax(alg.mat_vec_add(alg.matmult(X, weights), bias));
}
// softmax ( wTx + b )
void MLPPSoftmaxReg::forwardPass() {
MLPPLinAlg alg;
MLPPActivation avn;
y_hat = avn.softmax(alg.mat_vec_add(alg.matmult(inputSet, weights), bias));
}