mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-03 16:39:40 +01:00
59 lines
1.3 KiB
C++
59 lines
1.3 KiB
C++
//
|
|
// Transforms.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/13/20.
|
|
//
|
|
|
|
#include "transforms.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
/*
|
|
// DCT ii.
|
|
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
|
|
std::vector<std::vector<real_t>> MLPPTransforms::discreteCosineTransform(std::vector<std::vector<real_t>> A) {
|
|
MLPPLinAlg alg;
|
|
A = alg.scalarAdd(-128, A); // Center around 0.
|
|
|
|
std::vector<std::vector<real_t>> B;
|
|
B.resize(A.size());
|
|
for (uint32_t i = 0; i < B.size(); i++) {
|
|
B[i].resize(A[i].size());
|
|
}
|
|
|
|
int M = A.size();
|
|
|
|
for (uint32_t i = 0; i < B.size(); i++) {
|
|
for (uint32_t j = 0; j < B[i].size(); j++) {
|
|
real_t sum = 0;
|
|
real_t alphaI;
|
|
if (i == 0) {
|
|
alphaI = 1 / std::sqrt(M);
|
|
} else {
|
|
alphaI = std::sqrt(real_t(2) / real_t(M));
|
|
}
|
|
real_t alphaJ;
|
|
if (j == 0) {
|
|
alphaJ = 1 / std::sqrt(M);
|
|
} else {
|
|
alphaJ = std::sqrt(real_t(2) / real_t(M));
|
|
}
|
|
|
|
for (uint32_t k = 0; k < B.size(); k++) {
|
|
for (uint32_t f = 0; f < B[k].size(); f++) {
|
|
sum += A[k][f] * std::cos((Math_PI * i * (2 * k + 1)) / (2 * M)) * std::cos((Math_PI * j * (2 * f + 1)) / (2 * M));
|
|
}
|
|
}
|
|
B[i][j] = sum;
|
|
B[i][j] *= alphaI * alphaJ;
|
|
}
|
|
}
|
|
return B;
|
|
}
|
|
*/
|
|
|
|
void MLPPTransforms::_bind_methods() {
|
|
}
|