mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
95 lines
3.3 KiB
C++
95 lines
3.3 KiB
C++
#ifndef MLPP_K_MEANS_H
|
|
#define MLPP_K_MEANS_H
|
|
|
|
/*************************************************************************/
|
|
/* kmeans.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "core/object/reference.h"
|
|
|
|
#include "../lin_alg/mlpp_matrix.h"
|
|
#include "../lin_alg/mlpp_vector.h"
|
|
|
|
class MLPPKMeans : public Reference {
|
|
GDCLASS(MLPPKMeans, Reference);
|
|
|
|
public:
|
|
enum MeanType {
|
|
MEAN_TYPE_CENTROID = 0,
|
|
MEAN_TYPE_KMEANSPP,
|
|
};
|
|
|
|
public:
|
|
Ref<MLPPMatrix> get_input_set();
|
|
void set_input_set(const Ref<MLPPMatrix> &val);
|
|
|
|
int get_k();
|
|
void set_k(const int val);
|
|
|
|
MeanType get_mean_type();
|
|
void set_mean_type(const MeanType val);
|
|
|
|
void initialize();
|
|
|
|
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
|
|
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
|
|
void train(int epoch_num, bool UI = false);
|
|
real_t score();
|
|
Ref<MLPPVector> silhouette_scores();
|
|
|
|
MLPPKMeans();
|
|
~MLPPKMeans();
|
|
|
|
protected:
|
|
void _evaluate();
|
|
void _compute_mu();
|
|
|
|
void _centroid_initialization();
|
|
void _kmeanspp_initialization();
|
|
real_t _cost();
|
|
|
|
static void _bind_methods();
|
|
|
|
Ref<MLPPMatrix> _input_set;
|
|
Ref<MLPPMatrix> _mu;
|
|
Ref<MLPPMatrix> _r;
|
|
|
|
real_t _accuracy_threshold;
|
|
int _k;
|
|
bool _initialized;
|
|
|
|
MeanType _mean_type;
|
|
};
|
|
|
|
VARIANT_ENUM_CAST(MLPPKMeans::MeanType);
|
|
|
|
#endif /* KMeans_hpp */
|