pmlpp/svc/svc.h

116 lines
4.3 KiB
C++

#ifndef MLPP_SVC_H
#define MLPP_SVC_H
/*************************************************************************/
/* svc.h */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2023-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
// https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2
// Illustratd a practical definition of the Hinge Loss function and its gradient when optimizing with SGD.
#ifdef USING_SFW
#include "sfw.h"
#else
#include "core/math/math_defs.h"
#include "core/object/resource.h"
#endif
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPSVC : public Resource {
GDCLASS(MLPPSVC, Resource);
public:
Ref<MLPPMatrix> get_input_set() const;
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set() const;
void set_output_set(const Ref<MLPPMatrix> &val);
real_t get_c() const;
void set_c(const real_t val);
Ref<MLPPVector> data_z_get() const;
void data_z_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> data_y_hat_get() const;
void data_y_hat_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> data_weights_get() const;
void data_weights_set(const Ref<MLPPVector> &val);
real_t data_bias_get() const;
void data_bias_set(const real_t val);
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void train_sgd(real_t learning_rate, int max_epoch, bool ui = false);
void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
bool needs_init() const;
void initialize();
MLPPSVC(const Ref<MLPPMatrix> &input_set, const Ref<MLPPVector> &output_set, real_t c);
MLPPSVC();
~MLPPSVC();
protected:
real_t cost(const Ref<MLPPVector> &z, const Ref<MLPPVector> &y, const Ref<MLPPVector> &weights, real_t c);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
Ref<MLPPVector> propagatem(const Ref<MLPPMatrix> &X);
real_t evaluatev(const Ref<MLPPVector> &x);
real_t propagatev(const Ref<MLPPVector> &x);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
real_t _c;
Ref<MLPPVector> _z;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _weights;
real_t _bias;
};
#endif /* SVC_hpp */