pmlpp/mlpp/probit_reg/probit_reg.h

55 lines
1.4 KiB
C++

#ifndef MLPP_PROBIT_REG_H
#define MLPP_PROBIT_REG_H
//
// ProbitReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include <string>
#include <vector>
class ProbitReg {
public:
ProbitReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
double modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch = 0, bool UI = 1);
void MLE(double learning_rate, int max_epoch = 0, bool UI = 1);
void SGD(double learning_rate, int max_epoch = 0, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
double score();
void save(std::string fileName);
private:
double Cost(std::vector<double> y_hat, std::vector<double> y);
std::vector<double> Evaluate(std::vector<std::vector<double>> X);
std::vector<double> propagate(std::vector<std::vector<double>> X);
double Evaluate(std::vector<double> x);
double propagate(std::vector<double> x);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<double> outputSet;
std::vector<double> z;
std::vector<double> y_hat;
std::vector<double> weights;
double bias;
int n;
int k;
// Regularization Params
std::string reg;
double lambda;
double alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* ProbitReg_hpp */