mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-09 17:39:37 +01:00
309 lines
8.0 KiB
C++
309 lines
8.0 KiB
C++
//
|
|
// ExpReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "exp_reg.h"
|
|
#include "../cost/cost.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../stat/stat.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
Ref<MLPPVector> MLPPExpReg::model_set_test(const Ref<MLPPMatrix> &X) {
|
|
return evaluatem(X);
|
|
}
|
|
|
|
real_t MLPPExpReg::model_test(const Ref<MLPPVector> &x) {
|
|
return evaluatev(x);
|
|
}
|
|
|
|
void MLPPExpReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
Ref<MLPPVector> error = _y_hat->subn(_output_set);
|
|
|
|
for (int i = 0; i < _k; i++) {
|
|
// Calculating the weight gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < _n; j++) {
|
|
sum += error->element_get(j) * _input_set->element_get(j, i) * Math::pow(_weights->element_get(i), _input_set->element_get(j, i) - 1);
|
|
}
|
|
real_t w_gradient = sum / _n;
|
|
|
|
// Calculating the initial gradient
|
|
real_t sum2 = 0;
|
|
for (int j = 0; j < _n; j++) {
|
|
sum2 += error->element_get(j) * Math::pow(_weights->element_get(i), _input_set->element_get(j, i));
|
|
}
|
|
|
|
real_t i_gradient = sum2 / _n;
|
|
|
|
// Weight/initial updation
|
|
_weights->element_set(i, _weights->element_get(i) - learning_rate * w_gradient);
|
|
_initial->element_set(i, _initial->element_get(i) - learning_rate * i_gradient);
|
|
}
|
|
|
|
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < _n; j++) {
|
|
sum += (_y_hat->element_get(j) - _output_set->element_get(j));
|
|
}
|
|
real_t b_gradient = sum / _n;
|
|
|
|
// bias updation
|
|
_bias -= learning_rate * b_gradient;
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
MLPPUtilities::print_ui_vb(_weights, _bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPExpReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
|
|
|
Ref<MLPPVector> input_set_row_tmp;
|
|
input_set_row_tmp.instance();
|
|
input_set_row_tmp->resize(_input_set->size().x);
|
|
|
|
Ref<MLPPVector> y_hat_row_tmp;
|
|
y_hat_row_tmp.instance();
|
|
y_hat_row_tmp->resize(1);
|
|
|
|
Ref<MLPPVector> output_set_row_tmp;
|
|
output_set_row_tmp.instance();
|
|
output_set_row_tmp->resize(1);
|
|
|
|
while (true) {
|
|
int output_index = distribution(generator);
|
|
|
|
_input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp);
|
|
real_t output_element_set = _output_set->element_get(output_index);
|
|
output_set_row_tmp->element_set(0, output_element_set);
|
|
|
|
real_t y_hat = evaluatev(input_set_row_tmp);
|
|
y_hat_row_tmp->element_set(0, y_hat);
|
|
|
|
cost_prev = cost(y_hat_row_tmp, output_set_row_tmp);
|
|
|
|
for (int i = 0; i < _k; i++) {
|
|
// Calculating the weight gradients
|
|
|
|
real_t w_gradient = (y_hat - output_element_set) * input_set_row_tmp->element_get(i) * Math::pow(_weights->element_get(i), _input_set->element_get(output_index, i) - 1);
|
|
real_t i_gradient = (y_hat - output_element_set) * Math::pow(_weights->element_get(i), _input_set->element_get(output_index, i));
|
|
|
|
// Weight/initial updation
|
|
_weights->element_set(i, _weights->element_get(i) - learning_rate * w_gradient);
|
|
_initial->element_set(i, _initial->element_get(i) - learning_rate * i_gradient);
|
|
}
|
|
|
|
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradients
|
|
real_t b_gradient = (y_hat - output_element_set);
|
|
|
|
// Bias updation
|
|
_bias -= learning_rate * b_gradient;
|
|
y_hat = evaluatev(input_set_row_tmp);
|
|
|
|
if (ui) {
|
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_row_tmp, output_set_row_tmp));
|
|
MLPPUtilities::print_ui_vb(_weights, _bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
void MLPPExpReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = _n / mini_batch_size;
|
|
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
|
|
|
|
while (true) {
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
|
|
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
|
|
|
|
Ref<MLPPVector> y_hat = evaluatem(current_input_batch);
|
|
cost_prev = cost(y_hat, current_output_batch);
|
|
Ref<MLPPVector> error = y_hat->subn(current_output_batch);
|
|
|
|
for (int j = 0; j < _k; j++) {
|
|
// Calculating the weight gradient
|
|
real_t sum = 0;
|
|
for (int k = 0; k < current_output_batch->size(); k++) {
|
|
sum += error->element_get(k) * current_input_batch->element_get(k, j) * Math::pow(_weights->element_get(j), current_input_batch->element_get(k, j) - 1);
|
|
}
|
|
real_t w_gradient = sum / current_output_batch->size();
|
|
|
|
// Calculating the initial gradient
|
|
real_t sum2 = 0;
|
|
for (int k = 0; k < current_output_batch->size(); k++) {
|
|
sum2 += error->element_get(k) * Math::pow(_weights->element_get(j), current_input_batch->element_get(k, j));
|
|
}
|
|
|
|
real_t i_gradient = sum2 / current_output_batch->size();
|
|
|
|
// Weight/initial updation
|
|
_weights->element_set(i, _weights->element_get(i) - learning_rate * w_gradient);
|
|
_initial->element_set(i, _initial->element_get(i) - learning_rate * i_gradient);
|
|
}
|
|
|
|
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradient
|
|
//real_t sum = 0;
|
|
//for (int j = 0; j < current_output_batch->size(); j++) {
|
|
// sum += (y_hat->element_get(j) - current_output_batch->element_get(j));
|
|
//}
|
|
|
|
//real_t b_gradient = sum / output_mini_batches[i].size();
|
|
y_hat = evaluatem(current_input_batch);
|
|
|
|
if (ui) {
|
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output_batch));
|
|
MLPPUtilities::print_ui_vb(_weights, _bias);
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
real_t MLPPExpReg::score() {
|
|
MLPPUtilities util;
|
|
|
|
return util.performance_vec(_y_hat, _output_set);
|
|
}
|
|
|
|
void MLPPExpReg::save(const String &file_name) {
|
|
MLPPUtilities util;
|
|
|
|
//util.saveParameters(file_name, _weights, _initial, _bias);
|
|
}
|
|
|
|
MLPPExpReg::MLPPExpReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_n = p_input_set->size().y;
|
|
_k = p_input_set->size().x;
|
|
_reg = p_reg;
|
|
_lambda = p_lambda;
|
|
_alpha = p_alpha;
|
|
|
|
_y_hat.instance();
|
|
_y_hat->resize(_n);
|
|
|
|
MLPPUtilities util;
|
|
|
|
_weights.instance();
|
|
_weights->resize(_k);
|
|
|
|
util.weight_initializationv(_weights);
|
|
|
|
_initial.instance();
|
|
_initial->resize(_k);
|
|
|
|
util.weight_initializationv(_initial);
|
|
|
|
_bias = util.bias_initializationr();
|
|
}
|
|
|
|
MLPPExpReg::MLPPExpReg() {
|
|
}
|
|
MLPPExpReg::~MLPPExpReg() {
|
|
}
|
|
|
|
real_t MLPPExpReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
|
|
MLPPReg regularization;
|
|
MLPPCost mlpp_cost;
|
|
|
|
return mlpp_cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
|
|
}
|
|
|
|
real_t MLPPExpReg::evaluatev(const Ref<MLPPVector> &x) {
|
|
real_t y_hat = 0;
|
|
|
|
for (int i = 0; i < x->size(); i++) {
|
|
y_hat += _initial->element_get(i) * Math::pow(_weights->element_get(i), x->element_get(i));
|
|
}
|
|
|
|
return y_hat + _bias;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPExpReg::evaluatem(const Ref<MLPPMatrix> &X) {
|
|
Ref<MLPPVector> y_hat;
|
|
y_hat.instance();
|
|
y_hat->resize(X->size().y);
|
|
|
|
for (int i = 0; i < X->size().y; i++) {
|
|
real_t y = 0;
|
|
|
|
for (int j = 0; j < X->size().x; j++) {
|
|
y += _initial->element_get(j) * Math::pow(_weights->element_get(j), X->element_get(i, j));
|
|
}
|
|
|
|
y += _bias;
|
|
|
|
y_hat->element_set(i, y);
|
|
}
|
|
|
|
return y_hat;
|
|
}
|
|
|
|
// a * w^x + b
|
|
void MLPPExpReg::forward_pass() {
|
|
_y_hat = evaluatem(_input_set);
|
|
}
|
|
|
|
void MLPPExpReg::_bind_methods() {
|
|
}
|