pmlpp/MLPP/Transforms/Transforms.cpp

59 lines
1.6 KiB
C++

//
// Transforms.cpp
//
// Created by Marc Melikyan on 11/13/20.
//
#include "Transforms.hpp"
#include "LinAlg/LinAlg.hpp"
#include <iostream>
#include <string>
#include <cmath>
namespace MLPP{
// DCT ii.
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
std::vector<std::vector<double>> Transforms::discreteCosineTransform(std::vector<std::vector<double>> A){
LinAlg alg;
A = alg.scalarAdd(-128, A); // Center around 0.
std::vector<std::vector<double>> B;
B.resize(A.size());
for(int i = 0; i < B.size(); i++){
B[i].resize(A[i].size());
}
int M = A.size();
for(int i = 0; i < B.size(); i++){
for(int j = 0; j < B[i].size(); j++){
double sum = 0;
double alphaI;
if(i == 0){
alphaI = 1/std::sqrt(M);
}
else{
alphaI = std::sqrt(double(2)/double(M));
}
double alphaJ;
if(j == 0){
alphaJ = 1/std::sqrt(M);
}
else{
alphaJ = std::sqrt(double(2)/double(M));
}
for(int k = 0; k < B.size(); k++){
for(int f = 0; f < B[k].size(); f++){
sum += A[k][f] * std::cos( (M_PI * i * (2 * k + 1)) / (2 * M)) * std::cos( (M_PI * j * (2 * f + 1)) / (2 * M));
}
}
B[i][j] = sum;
B[i][j] *= alphaI * alphaJ;
}
}
return B;
}
}