mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-20 15:17:17 +01:00
57 lines
1.8 KiB
C++
57 lines
1.8 KiB
C++
//
|
|
// SVC.hpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
|
|
// https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2
|
|
// Illustratd a practical definition of the Hinge Loss function and its gradient when optimizing with SGD.
|
|
#ifndef SVC_hpp
|
|
#define SVC_hpp
|
|
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
namespace MLPP {
|
|
|
|
class SVC{
|
|
|
|
public:
|
|
SVC(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, double C);
|
|
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
|
|
double modelTest(std::vector<double> x);
|
|
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
|
|
void SGD(double learning_rate, int max_epoch, bool UI = 1);
|
|
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
|
double score();
|
|
void save(std::string fileName);
|
|
private:
|
|
|
|
double Cost(std::vector <double> y_hat, std::vector<double> y, std::vector<double> weights, double C);
|
|
|
|
std::vector<double> Evaluate(std::vector<std::vector<double>> X);
|
|
std::vector<double> propagate(std::vector<std::vector<double>> X);
|
|
double Evaluate(std::vector<double> x);
|
|
double propagate(std::vector<double> x);
|
|
void forwardPass();
|
|
|
|
std::vector<std::vector<double>> inputSet;
|
|
std::vector<double> outputSet;
|
|
std::vector<double> z;
|
|
std::vector<double> y_hat;
|
|
std::vector<double> weights;
|
|
double bias;
|
|
|
|
double C;
|
|
int n;
|
|
int k;
|
|
|
|
// UI Portion
|
|
void UI(int epoch, double cost_prev);
|
|
};
|
|
}
|
|
|
|
#endif /* SVC_hpp */
|