pmlpp/MLPP/NumericalAnalysis/NumericalAnalysis.hpp

58 lines
3.2 KiB
C++

//
// NumericalAnalysis.hpp
//
//
#ifndef NumericalAnalysis_hpp
#define NumericalAnalysis_hpp
#include <vector>
#include <string>
namespace MLPP{
class NumericalAnalysis{
public:
/* A numerical method for derivatives is used. This may be subject to change,
as an analytical method for calculating derivatives will most likely be used in
the future.
*/
double numDiff(double(*function)(double), double x);
double numDiff_2(double(*function)(double), double x);
double numDiff_3(double(*function)(double), double x);
double constantApproximation(double(*function)(double), double c);
double linearApproximation(double(*function)(double), double c, double x);
double quadraticApproximation(double(*function)(double), double c, double x);
double cubicApproximation(double(*function)(double), double c, double x);
double numDiff(double(*function)(std::vector<double>), std::vector<double> x, int axis);
double numDiff_2(double(*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2);
double numDiff_3(double(*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2, int axis3);
double newtonRaphsonMethod(double(*function)(double), double x_0, double epoch_num);
double halleyMethod(double(*function)(double), double x_0, double epoch_num);
double invQuadraticInterpolation(double (*function)(double), std::vector<double> x_0, double epoch_num);
double eulerianMethod(double(*derivative)(double), std::vector<double> q_0, double p, double h); // Euler's method for solving diffrential equations.
double eulerianMethod(double(*derivative)(std::vector<double>), std::vector<double> q_0, double p, double h); // Euler's method for solving diffrential equations.
double growthMethod(double C, double k, double t); // General growth-based diffrential equations can be solved by seperation of variables.
std::vector<double> jacobian(double(*function)(std::vector<double>), std::vector<double> x); // Indeed, for functions with scalar outputs the Jacobians will be vectors.
std::vector<std::vector<double>> hessian(double(*function)(std::vector<double>), std::vector<double> x);
std::vector<std::vector<std::vector<double>>> thirdOrderTensor(double(*function)(std::vector<double>), std::vector<double> x);
double constantApproximation(double(*function)(std::vector<double>), std::vector<double> c);
double linearApproximation(double(*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
double quadraticApproximation(double(*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
double cubicApproximation(double(*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
double laplacian(double(*function)(std::vector<double>), std::vector<double> x); // laplacian
std::string secondPartialDerivativeTest(double(*function)(std::vector<double>), std::vector<double> x);
};
}
#endif /* NumericalAnalysis_hpp */