pmlpp/MLPP/MLP/MLP.hpp

62 lines
2.0 KiB
C++

//
// MLP.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#ifndef MLP_hpp
#define MLP_hpp
#include <vector>
#include <map>
#include <string>
namespace MLPP {
class MLP{
public:
MLP(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, int n_hidden, std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
double modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
void SGD(double learning_rate, int max_epoch, bool UI = 1);
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
double score();
void save(std::string fileName);
private:
double Cost(std::vector <double> y_hat, std::vector<double> y);
std::vector<double> Evaluate(std::vector<std::vector<double>> X);
std::tuple<std::vector<std::vector<double>>, std::vector<std::vector<double>>> propagate(std::vector<std::vector<double>> X);
double Evaluate(std::vector<double> x);
std::tuple<std::vector<double>, std::vector<double>> propagate(std::vector<double> x);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<double> outputSet;
std::vector<double> y_hat;
std::vector<std::vector<double>> weights1;
std::vector<double> weights2;
std::vector<double> bias1;
double bias2;
std::vector<std::vector<double>> z2;
std::vector<std::vector<double>> a2;
int n;
int k;
int n_hidden;
// Regularization Params
std::string reg;
double lambda; /* Regularization Parameter */
double alpha; /* This is the controlling param for Elastic Net*/
};
}
#endif /* MLP_hpp */