mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-04 16:49:36 +01:00
233 lines
8.4 KiB
C++
233 lines
8.4 KiB
C++
//
|
|
// LinReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "LinReg.hpp"
|
|
#include "LinAlg/LinAlg.hpp"
|
|
#include "Stat/Stat.hpp"
|
|
#include "Regularization/Reg.hpp"
|
|
#include "Utilities/Utilities.hpp"
|
|
#include "Cost/Cost.hpp"
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <random>
|
|
|
|
namespace MLPP{
|
|
|
|
LinReg::LinReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg, double lambda, double alpha)
|
|
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha)
|
|
{
|
|
y_hat.resize(n);
|
|
|
|
weights = Utilities::weightInitialization(k);
|
|
bias = Utilities::biasInitialization();
|
|
}
|
|
|
|
std::vector<double> LinReg::modelSetTest(std::vector<std::vector<double>> X){
|
|
return Evaluate(X);
|
|
}
|
|
|
|
double LinReg::modelTest(std::vector<double> x){
|
|
return Evaluate(x);
|
|
}
|
|
|
|
void LinReg::NewtonRaphson(double learning_rate, int max_epoch, bool UI){
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
while(true){
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
// Calculating the weight gradients (2nd derivative)
|
|
std::vector<double> first_derivative = alg.mat_vec_mult(alg.transpose(inputSet), error);
|
|
std::vector<std::vector<double>> second_derivative = alg.matmult(alg.transpose(inputSet), inputSet);
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(alg.inverse(second_derivative)), first_derivative)));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Calculating the bias gradients (2nd derivative)
|
|
bias -= learning_rate * alg.sum_elements(error) / n; // We keep this the same. The 2nd derivative is just [1].
|
|
forwardPass();
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
}
|
|
|
|
void LinReg::gradientDescent(double learning_rate, int max_epoch, bool UI){
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while(true){
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
// Calculating the weight gradients
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), error)));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(error) / n;
|
|
forwardPass();
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
}
|
|
|
|
void LinReg::SGD(double learning_rate, int max_epoch, bool UI){
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
while(true){
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
int outputIndex = distribution(generator);
|
|
|
|
double y_hat = Evaluate(inputSet[outputIndex]);
|
|
cost_prev = Cost({y_hat}, {outputSet[outputIndex]});
|
|
|
|
double error = y_hat - outputSet[outputIndex];
|
|
|
|
// Weight updation
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex]));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Bias updation
|
|
bias -= learning_rate * error;
|
|
|
|
y_hat = Evaluate({inputSet[outputIndex]});
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost({y_hat}, {outputSet[outputIndex]}));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
void LinReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = n/mini_batch_size;
|
|
auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
|
|
while(true){
|
|
for(int i = 0; i < n_mini_batch; i++){
|
|
std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
|
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
// Calculating the weight gradients
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
}
|
|
epoch++;
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
void LinReg::normalEquation(){
|
|
LinAlg alg;
|
|
Stat stat;
|
|
std::vector<double> x_means;
|
|
std::vector<std::vector<double>> inputSetT = alg.transpose(inputSet);
|
|
|
|
x_means.resize(inputSetT.size());
|
|
for(int i = 0; i < inputSetT.size(); i++){
|
|
x_means[i] = (stat.mean(inputSetT[i]));
|
|
}
|
|
|
|
try{
|
|
std::vector<double> temp;
|
|
temp.resize(k);
|
|
temp = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet));
|
|
if(std::isnan(temp[0])){
|
|
throw 99;
|
|
}
|
|
else{
|
|
if(reg == "Ridge") {
|
|
weights = alg.mat_vec_mult(alg.inverse(alg.addition(alg.matmult(alg.transpose(inputSet), inputSet), alg.scalarMultiply(lambda, alg.identity(k)))), alg.mat_vec_mult(alg.transpose(inputSet), outputSet));
|
|
}
|
|
else{ weights = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet)); }
|
|
|
|
bias = stat.mean(outputSet) - alg.dot(weights, x_means);
|
|
|
|
forwardPass();
|
|
}
|
|
}
|
|
catch(int err_num){
|
|
std::cout << "ERR " << err_num << ": Resulting matrix was noninvertible/degenerate, and so the normal equation could not be performed. Try utilizing gradient descent." << std::endl;
|
|
}
|
|
}
|
|
|
|
double LinReg::score(){
|
|
Utilities util;
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void LinReg::save(std::string fileName){
|
|
Utilities util;
|
|
util.saveParameters(fileName, weights, bias);
|
|
}
|
|
|
|
double LinReg::Cost(std::vector <double> y_hat, std::vector<double> y){
|
|
Reg regularization;
|
|
class Cost cost;
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
|
}
|
|
|
|
std::vector<double> LinReg::Evaluate(std::vector<std::vector<double>> X){
|
|
LinAlg alg;
|
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
|
}
|
|
|
|
double LinReg::Evaluate(std::vector<double> x){
|
|
LinAlg alg;
|
|
return alg.dot(weights, x) + bias;
|
|
}
|
|
|
|
// wTx + b
|
|
void LinReg::forwardPass(){
|
|
y_hat = Evaluate(inputSet);
|
|
}
|
|
} |