pmlpp/mlpp/ann/ann.cpp

913 lines
33 KiB
C++

//
// ANN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "ann.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include "core/log/logger.h"
#include <random>
Ref<MLPPVector> MLPPANN::model_set_test(const Ref<MLPPMatrix> &X) {
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[0];
layer->set_input(X);
layer->forward_pass();
for (int i = 1; i < _network.size(); i++) {
layer = _network[i];
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
layer->set_input(prev_layer->get_a());
layer->forward_pass();
}
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
} else {
_output_layer->set_input(X);
}
_output_layer->forward_pass();
return _output_layer->get_a();
}
real_t MLPPANN::model_test(const Ref<MLPPVector> &x) {
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[0];
layer->test(x);
for (int i = 1; i < _network.size(); i++) {
layer = _network[i];
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
layer->test(prev_layer->get_a_test());
}
_output_layer->test(_network.write[_network.size() - 1]->get_a_test());
} else {
_output_layer->test(x);
}
return _output_layer->get_a_test();
}
void MLPPANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
real_t initial_learning_rate = learning_rate;
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
cost_prev = cost(_y_hat, _output_set);
ComputeGradientsResult grads = compute_gradients(_y_hat, _output_set);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad);
update_parameters(grads.cumulative_hidden_layer_w_grad, grads.output_w_grad, learning_rate); // subject to change. may want bias to have this matrix too.
forward_pass();
if (ui) {
print_ui(epoch, cost_prev, _y_hat, _output_set);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPANN::sgd(real_t learning_rate, int max_epoch, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> y_hat_row_tmp;
y_hat_row_tmp.instance();
y_hat_row_tmp->resize(1);
Ref<MLPPVector> output_set_row_tmp;
output_set_row_tmp.instance();
output_set_row_tmp->resize(1);
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
int output_index = distribution(generator);
_input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp);
real_t output_set_element = _output_set->get_element(output_index);
output_set_row_tmp->set_element(0, output_set_element);
real_t y_hat = model_test(input_set_row_tmp);
y_hat_row_tmp->set_element(0, y_hat);
cost_prev = cost(y_hat_row_tmp, output_set_row_tmp);
ComputeGradientsResult grads = compute_gradients(y_hat_row_tmp, output_set_row_tmp);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad);
update_parameters(grads.cumulative_hidden_layer_w_grad, grads.output_w_grad, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_test(input_set_row_tmp);
if (ui) {
print_ui(epoch, cost_prev, y_hat_row_tmp, output_set_row_tmp);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
grads.cumulative_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad);
grads.output_w_grad = alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad);
update_parameters(grads.cumulative_hidden_layer_w_grad, grads.output_w_grad, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool nag, bool ui) {
class MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> v_hidden;
Ref<MLPPVector> v_output;
v_output.instance();
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (v_output->size() == 0) {
v_output->resize(grads.output_w_grad->size());
}
if (nag) { // "Aposterori" calculation
update_parameters(v_hidden, v_output, 0); // DON'T update bias.
}
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(gamma, v_hidden), alg.scalar_multiply_vm(learning_rate / _n, grads.cumulative_hidden_layer_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(gamma, v_output), alg.scalar_multiplynv(learning_rate / _n, grads.output_w_grad));
update_parameters(v_hidden, v_output, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> v_hidden;
Ref<MLPPVector> v_output;
v_output.instance();
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (v_output->size() == 0) {
v_output->resize(grads.output_w_grad->size());
}
v_hidden = alg.addition_vt(v_hidden, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2));
v_output = alg.additionnv(v_output, alg.exponentiatev(grads.output_w_grad, 2));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_division_vt(grads.cumulative_hidden_layer_w_grad, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_division(grads.output_w_grad, alg.scalar_addnv(e, alg.sqrtv(v_output))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> v_hidden;
Ref<MLPPVector> v_output;
v_output.instance();
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (v_output->size() == 0) {
v_output->resize(grads.output_w_grad->size());
}
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(1 - b1, v_hidden), alg.scalar_multiply_vm(b1, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
v_output = alg.additionnv(v_output, alg.exponentiatev(grads.output_w_grad, 2));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_division_vt(grads.cumulative_hidden_layer_w_grad, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_division(grads.output_w_grad, alg.scalar_addnv(e, alg.sqrtv(v_output))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> m_hidden;
Vector<Ref<MLPPMatrix>> v_hidden;
Ref<MLPPVector> m_output;
Ref<MLPPVector> v_output;
m_output.instance();
v_output.instance();
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && v_output->size()) {
m_output->resize(grads.output_w_grad->size());
v_output->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(b2, v_hidden), alg.scalar_multiply_vm(1 - b2, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(b2, v_output), alg.scalar_multiplynv(1 - b2, alg.exponentiatev(grads.output_w_grad, 2)));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiply_vm(1 / (1 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> v_hidden_hat = alg.scalar_multiply_vm(1 / (1 - Math::pow(b2, epoch)), v_hidden);
Ref<MLPPVector> m_output_hat = alg.scalar_multiplynv(1 / (1 - Math::pow(b1, epoch)), m_output);
Ref<MLPPVector> v_output_hat = alg.scalar_multiplynv(1 / (1 - Math::pow(b2, epoch)), v_output);
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_division_vt(m_hidden_hat, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden_hat))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_division(m_output_hat, alg.scalar_addnv(e, alg.sqrtv(v_output_hat))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> m_hidden;
Vector<Ref<MLPPMatrix>> u_hidden;
Ref<MLPPVector> m_output;
Ref<MLPPVector> u_output;
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && u_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
u_hidden = alg.resize_vt(u_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && u_output->size() == 0) {
m_output->resize(grads.output_w_grad->size());
u_output->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
u_hidden = alg.max_vt(alg.scalar_multiply_vm(b2, u_hidden), alg.abs_vt(grads.cumulative_hidden_layer_w_grad));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
u_output = alg.maxnvv(alg.scalar_multiplynv(b2, u_output), alg.absv(grads.output_w_grad));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiply_vm(1 / (1 - Math::pow(b1, epoch)), m_hidden);
Ref<MLPPVector> m_output_hat = alg.scalar_multiplynv(1 / (1 - Math::pow(b1, epoch)), m_output);
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_division_vt(m_hidden_hat, alg.scalar_add_vm(e, u_hidden)));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_division(m_output_hat, alg.scalar_addnv(e, u_output)));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> m_hidden;
Vector<Ref<MLPPMatrix>> v_hidden;
Ref<MLPPVector> m_output;
Ref<MLPPVector> v_output;
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && v_output->size() == 0) {
m_output->resize(grads.output_w_grad->size());
v_output->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(b2, v_hidden), alg.scalar_multiply_vm(1 - b2, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(b2, v_output), alg.scalar_multiplynv(1 - b2, alg.exponentiatev(grads.output_w_grad, 2)));
Vector<Ref<MLPPMatrix>> m_hidden_hat = alg.scalar_multiply_vm(1 / (1.0 - Math::pow(b1, epoch)), m_hidden);
Vector<Ref<MLPPMatrix>> v_hidden_hat = alg.scalar_multiply_vm(1 / (1.0 - Math::pow(b2, epoch)), v_hidden);
Vector<Ref<MLPPMatrix>> m_hidden_final = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden_hat), alg.scalar_multiply_vm((1 - b1) / (1 - Math::pow(b1, epoch)), grads.cumulative_hidden_layer_w_grad));
Ref<MLPPVector> m_output_hat = alg.scalar_multiplynv(1 / (1.0 - Math::pow(b1, epoch)), m_output);
Ref<MLPPVector> v_output_hat = alg.scalar_multiplynv(1 / (1.0 - Math::pow(b2, epoch)), v_output);
Ref<MLPPVector> m_output_final = alg.additionnv(alg.scalar_multiplynv(b1, m_output_hat), alg.scalar_multiplynv((1 - b1) / (1.0 - Math::pow(b1, epoch)), grads.output_w_grad));
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_division_vt(m_hidden_final, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden_hat))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_divisionm(m_output_final, alg.scalar_addnv(e, alg.sqrtv(v_output_hat))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPANN::amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
// Initializing necessary components for Adam.
Vector<Ref<MLPPMatrix>> m_hidden;
Vector<Ref<MLPPMatrix>> v_hidden;
Vector<Ref<MLPPMatrix>> v_hidden_hat;
Ref<MLPPVector> m_output;
Ref<MLPPVector> v_output;
Ref<MLPPVector> v_output_hat;
while (true) {
learning_rate = apply_learning_rate_scheduler(initial_learning_rate, _decay_constant, epoch, _drop_rate);
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = model_set_test(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
ComputeGradientsResult grads = compute_gradients(y_hat, current_output_batch);
if (!_network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize_vt(m_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden = alg.resize_vt(v_hidden, grads.cumulative_hidden_layer_w_grad);
v_hidden_hat = alg.resize_vt(v_hidden_hat, grads.cumulative_hidden_layer_w_grad);
}
if (m_output->size() == 0 && v_output->size() == 0) {
m_output->resize(grads.output_w_grad->size());
v_output->resize(grads.output_w_grad->size());
v_output_hat->resize(grads.output_w_grad->size());
}
m_hidden = alg.addition_vt(alg.scalar_multiply_vm(b1, m_hidden), alg.scalar_multiply_vm(1 - b1, grads.cumulative_hidden_layer_w_grad));
v_hidden = alg.addition_vt(alg.scalar_multiply_vm(b2, v_hidden), alg.scalar_multiply_vm(1 - b2, alg.exponentiate_vt(grads.cumulative_hidden_layer_w_grad, 2)));
m_output = alg.additionnv(alg.scalar_multiplynv(b1, m_output), alg.scalar_multiplynv(1 - b1, grads.output_w_grad));
v_output = alg.additionnv(alg.scalar_multiplynv(b2, v_output), alg.scalar_multiplynv(1 - b2, alg.exponentiatev(grads.output_w_grad, 2)));
v_hidden_hat = alg.max_vt(v_hidden_hat, v_hidden);
v_output_hat = alg.maxnvv(v_output_hat, v_output);
Vector<Ref<MLPPMatrix>> hidden_layer_updations = alg.scalar_multiply_vm(learning_rate / _n, alg.element_wise_division_vt(m_hidden, alg.scalar_add_vm(e, alg.sqrt_vt(v_hidden_hat))));
Ref<MLPPVector> output_layer_updation = alg.scalar_multiplynv(learning_rate / _n, alg.element_wise_division(m_output, alg.scalar_addnv(e, alg.sqrtv(v_output_hat))));
update_parameters(hidden_layer_updations, output_layer_updation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = model_set_test(current_input_batch);
if (ui) {
print_ui(epoch, cost_prev, y_hat, current_output_batch);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
real_t MLPPANN::score() {
MLPPUtilities util;
forward_pass();
return util.performance_vec(_y_hat, _output_set);
}
void MLPPANN::save(const String &file_name) {
MLPPUtilities util;
/*
if (!_network.empty()) {
util.saveParameters(file_name, _network[0].weights, _network[0].bias, false, 1);
for (uint32_t i = 1; i < _network.size(); i++) {
util.saveParameters(file_name, _network[i].weights, _network[i].bias, true, i + 1);
}
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, true, _network.size() + 1);
} else {
util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, false, _network.size() + 1);
}
*/
}
void MLPPANN::set_learning_rate_scheduler(SchedulerType type, real_t decay_constant) {
_lr_scheduler = type;
_decay_constant = decay_constant;
}
void MLPPANN::set_learning_rate_scheduler_drop(SchedulerType type, real_t decay_constant, real_t drop_rate) {
_lr_scheduler = type;
_decay_constant = decay_constant;
_drop_rate = drop_rate;
}
void MLPPANN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
if (_network.empty()) {
_network.push_back(Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _input_set, weight_init, reg, lambda, alpha))));
_network.write[0]->forward_pass();
} else {
_network.push_back(Ref<MLPPHiddenLayer>(memnew(MLPPHiddenLayer(n_hidden, activation, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha))));
_network.write[_network.size() - 1]->forward_pass();
}
}
void MLPPANN::add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
if (!_network.empty()) {
_output_layer = Ref<MLPPOutputLayer>(memnew(MLPPOutputLayer(_network.write[_network.size() - 1]->get_n_hidden(), activation, loss, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha)));
} else {
_output_layer = Ref<MLPPOutputLayer>(memnew(MLPPOutputLayer(_k, activation, loss, _input_set, weight_init, reg, lambda, alpha)));
}
}
MLPPANN::MLPPANN(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_lr_scheduler = SCHEDULER_TYPE_NONE;
_decay_constant = 0;
_drop_rate = 0;
}
MLPPANN::MLPPANN() {
}
MLPPANN::~MLPPANN() {
}
// https://en.wikipedia.org/wiki/Learning_rate
// Learning Rate Decay (C2W2L09) - Andrew Ng - Deep Learning Specialization
real_t MLPPANN::apply_learning_rate_scheduler(real_t learning_rate, real_t decay_constant, real_t epoch, real_t drop_rate) {
if (_lr_scheduler == SCHEDULER_TYPE_TIME) {
return learning_rate / (1 + decay_constant * epoch);
} else if (_lr_scheduler == SCHEDULER_TYPE_EPOCH) {
return learning_rate * (decay_constant / std::sqrt(epoch));
} else if (_lr_scheduler == SCHEDULER_TYPE_STEP) {
return learning_rate * Math::pow(decay_constant, int((1 + epoch) / drop_rate)); // Utilizing an explicit int conversion implicitly takes the floor.
} else if (_lr_scheduler == SCHEDULER_TYPE_EXPONENTIAL) {
return learning_rate * Math::exp(-decay_constant * epoch);
}
return learning_rate;
}
real_t MLPPANN::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
MLPPReg regularization;
MLPPCost mlpp_cost;
real_t total_reg_term = 0;
if (!_network.empty()) {
for (int i = 0; i < _network.size() - 1; i++) {
Ref<MLPPHiddenLayer> layer = _network[i];
total_reg_term += regularization.reg_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg());
}
}
return mlpp_cost.run_cost_norm_vector(_output_layer->get_cost(), y_hat, y) + total_reg_term + regularization.reg_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg());
}
void MLPPANN::forward_pass() {
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[0];
layer->set_input(_input_set);
layer->forward_pass();
for (int i = 1; i < _network.size(); i++) {
layer = _network[i];
Ref<MLPPHiddenLayer> prev_layer = _network[i - 1];
layer->set_input(prev_layer->get_a());
layer->forward_pass();
}
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
} else {
_output_layer->set_input(_input_set);
}
_output_layer->forward_pass();
_y_hat = _output_layer->get_a();
}
void MLPPANN::update_parameters(const Vector<Ref<MLPPMatrix>> &hidden_layer_updations, const Ref<MLPPVector> &output_layer_updation, real_t learning_rate) {
MLPPLinAlg alg;
_output_layer->set_weights(alg.subtractionnv(_output_layer->get_weights(), output_layer_updation));
_output_layer->set_bias(_output_layer->get_bias() - learning_rate * alg.sum_elementsv(_output_layer->get_delta()) / _n);
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[0]));
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / _n, layer->get_delta())));
for (int i = _network.size() - 2; i >= 0; i--) {
layer = _network[i];
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[(_network.size() - 2) - i + 1]));
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / _n, layer->get_delta())));
}
}
}
MLPPANN::ComputeGradientsResult MLPPANN::compute_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &_output_set) {
// std::cout << "BEGIN" << std::endl;
MLPPCost mlpp_cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
ComputeGradientsResult res;
_output_layer->set_delta(alg.hadamard_productnv(mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, _output_set), avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z())));
res.output_w_grad = alg.mat_vec_multv(alg.transposem(_output_layer->get_input()), _output_layer->get_delta());
res.output_w_grad = alg.additionnv(res.output_w_grad, regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()));
if (!_network.empty()) {
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
layer->set_delta(alg.hadamard_productm(alg.outer_product(_output_layer->get_delta(), _output_layer->get_weights()), avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z())));
Ref<MLPPMatrix> hidden_layer_w_grad = alg.matmultm(alg.transposem(layer->get_input()), layer->get_delta());
res.cumulative_hidden_layer_w_grad.push_back(alg.additionm(hidden_layer_w_grad, regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
for (int i = _network.size() - 2; i >= 0; i--) {
layer = _network[i];
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
layer->set_delta(alg.hadamard_productm(alg.matmultm(next_layer->get_delta(), alg.transposem(next_layer->get_weights())), avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z())));
hidden_layer_w_grad = alg.matmultm(alg.transposem(layer->get_input()), layer->get_delta());
res.cumulative_hidden_layer_w_grad.push_back(alg.additionm(hidden_layer_w_grad, regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return res;
}
void MLPPANN::print_ui(int epoch, real_t cost_prev, const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &p_output_set) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, p_output_set));
PLOG_MSG("Layer " + itos(_network.size() + 1) + ": ");
MLPPUtilities::print_ui_vb(_output_layer->get_weights(), _output_layer->get_bias());
if (!_network.empty()) {
for (int i = _network.size() - 1; i >= 0; i--) {
Ref<MLPPHiddenLayer> layer = _network[i];
PLOG_MSG("Layer " + itos(i + 1) + ": ");
MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias());
}
}
}
void MLPPANN::_bind_methods() {
}