mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
101 lines
2.8 KiB
C++
101 lines
2.8 KiB
C++
|
|
#ifndef MLPP_LIN_REG_H
|
|
#define MLPP_LIN_REG_H
|
|
|
|
//
|
|
// LinReg.hpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "core/object/reference.h"
|
|
|
|
#include "../lin_alg/mlpp_matrix.h"
|
|
#include "../lin_alg/mlpp_vector.h"
|
|
|
|
#include "../regularization/reg.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
class MLPPLinReg : public Reference {
|
|
GDCLASS(MLPPLinReg, Reference);
|
|
|
|
public:
|
|
/*
|
|
Ref<MLPPMatrix> get_input_set();
|
|
void set_input_set(const Ref<MLPPMatrix> &val);
|
|
|
|
Ref<MLPPVector> get_output_set();
|
|
void set_output_set(const Ref<MLPPVector> &val);
|
|
|
|
MLPPReg::RegularizationType get_reg();
|
|
void set_reg(const MLPPReg::RegularizationType val);
|
|
|
|
real_t get_lambda();
|
|
void set_lambda(const real_t val);
|
|
|
|
real_t get_alpha();
|
|
void set_alpha(const real_t val);
|
|
*/
|
|
|
|
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
|
real_t model_test(std::vector<real_t> x);
|
|
|
|
void newton_raphson(real_t learning_rate, int max_epoch, bool ui = false);
|
|
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
|
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
|
|
void momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool ui = false);
|
|
void nag(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool ui = false);
|
|
void adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui = false);
|
|
void adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui = false);
|
|
void adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
void adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
void nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
|
|
|
|
void normal_equation();
|
|
|
|
real_t score();
|
|
|
|
void save(std::string fileName);
|
|
|
|
bool is_initialized();
|
|
void initialize();
|
|
|
|
MLPPLinReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, std::string p_reg = "None", real_t p_lambda = 0.5, real_t p_alpha = 0.5);
|
|
|
|
MLPPLinReg();
|
|
~MLPPLinReg();
|
|
|
|
protected:
|
|
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
|
|
|
|
real_t evaluatev(std::vector<real_t> x);
|
|
std::vector<real_t> evaluatem(std::vector<std::vector<real_t>> X);
|
|
|
|
void forward_pass();
|
|
|
|
static void _bind_methods();
|
|
|
|
std::vector<std::vector<real_t>> _input_set;
|
|
std::vector<real_t> _output_set;
|
|
std::vector<real_t> _y_hat;
|
|
std::vector<real_t> _weights;
|
|
real_t _bias;
|
|
|
|
int _n;
|
|
int _k;
|
|
|
|
// Regularization Params
|
|
std::string _reg;
|
|
int _lambda;
|
|
int _alpha; /* This is the controlling param for Elastic Net*/
|
|
|
|
bool _initialized;
|
|
};
|
|
|
|
#endif /* LinReg_hpp */
|