mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-12 18:01:10 +01:00
251 lines
6.5 KiB
C++
251 lines
6.5 KiB
C++
//
|
|
// CLogLogReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "c_log_log_reg.h"
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
std::vector<real_t> MLPPCLogLogReg::model_set_test(std::vector<std::vector<real_t>> X) {
|
|
return evaluatem(X);
|
|
}
|
|
|
|
real_t MLPPCLogLogReg::model_test(std::vector<real_t> x) {
|
|
return evaluatev(x);
|
|
}
|
|
|
|
void MLPPCLogLogReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
std::vector<real_t> error = alg.subtraction(_y_hat, _output_set);
|
|
|
|
// Calculating the weight gradients
|
|
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(_input_set), alg.hadamard_product(error, avn.cloglog(_z, true)))));
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(_z, true))) / _n;
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
MLPPUtilities::UI(_weights, bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPCLogLogReg::mle(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
std::vector<real_t> error = alg.subtraction(_y_hat, _output_set);
|
|
|
|
_weights = alg.addition(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(_input_set), alg.hadamard_product(error, avn.cloglog(_z, true)))));
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradients
|
|
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(_z, true))) / _n;
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
MLPPUtilities::UI(_weights, bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPCLogLogReg::sgd(real_t learning_rate, int max_epoch, bool p_) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
|
int outputIndex = distribution(generator);
|
|
|
|
real_t y_hat = evaluatev(_input_set[outputIndex]);
|
|
real_t z = propagatev(_input_set[outputIndex]);
|
|
cost_prev = cost({ y_hat }, { _output_set[outputIndex] });
|
|
|
|
real_t error = y_hat - _output_set[outputIndex];
|
|
|
|
// Weight Updation
|
|
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate * error * exp(z - exp(z)), _input_set[outputIndex]));
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Bias updation
|
|
bias -= learning_rate * error * exp(z - exp(z));
|
|
|
|
y_hat = evaluatev(_input_set[outputIndex]);
|
|
|
|
if (p_) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _output_set[outputIndex] }));
|
|
MLPPUtilities::UI(_weights, bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
void MLPPCLogLogReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool p_) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = _n / mini_batch_size;
|
|
auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch);
|
|
auto inputMiniBatches = std::get<0>(batches);
|
|
auto outputMiniBatches = std::get<1>(batches);
|
|
|
|
while (true) {
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
std::vector<real_t> y_hat = evaluatem(inputMiniBatches[i]);
|
|
std::vector<real_t> z = propagatem(inputMiniBatches[i]);
|
|
cost_prev = cost(y_hat, outputMiniBatches[i]);
|
|
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
// Calculating the weight gradients
|
|
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.cloglog(z, 1)))));
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / _n;
|
|
|
|
forward_pass();
|
|
|
|
y_hat = evaluatem(inputMiniBatches[i]);
|
|
|
|
if (p_) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputMiniBatches[i]));
|
|
MLPPUtilities::UI(_weights, bias);
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
real_t MLPPCLogLogReg::score() {
|
|
MLPPUtilities util;
|
|
return util.performance(_y_hat, _output_set);
|
|
}
|
|
|
|
MLPPCLogLogReg::MLPPCLogLogReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_n = _input_set.size();
|
|
_k = _input_set[0].size();
|
|
_reg = p_reg;
|
|
_lambda = p_lambda;
|
|
_alpha = p_alpha;
|
|
|
|
_y_hat.resize(_n);
|
|
|
|
_weights = MLPPUtilities::weightInitialization(_k);
|
|
bias = MLPPUtilities::biasInitialization();
|
|
}
|
|
|
|
MLPPCLogLogReg::MLPPCLogLogReg() {
|
|
}
|
|
MLPPCLogLogReg::~MLPPCLogLogReg() {
|
|
}
|
|
|
|
real_t MLPPCLogLogReg::cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
|
MLPPReg regularization;
|
|
class MLPPCost cost;
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(_weights, _lambda, _alpha, _reg);
|
|
}
|
|
|
|
real_t MLPPCLogLogReg::evaluatev(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
return avn.cloglog(alg.dot(_weights, x) + bias);
|
|
}
|
|
|
|
real_t MLPPCLogLogReg::propagatev(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
return alg.dot(_weights, x) + bias;
|
|
}
|
|
|
|
std::vector<real_t> MLPPCLogLogReg::evaluatem(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
return avn.cloglog(alg.scalarAdd(bias, alg.mat_vec_mult(X, _weights)));
|
|
}
|
|
|
|
std::vector<real_t> MLPPCLogLogReg::propagatem(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, _weights));
|
|
}
|
|
|
|
// cloglog ( wTx + b )
|
|
void MLPPCLogLogReg::forward_pass() {
|
|
MLPPActivation avn;
|
|
|
|
_z = propagatem(_input_set);
|
|
_y_hat = avn.cloglog(_z);
|
|
}
|