pmlpp/mlpp/activation/activation.cpp

2204 lines
62 KiB
C++

//
// Activation.cpp
//
// Created by Marc Melikyan on 1/16/21.
//
#include "activation.h"
#include "../lin_alg/lin_alg.h"
#include <algorithm>
#include <cmath>
#include <iostream>
MLPPActivation::ActivationFunctionPointer MLPPActivation::get_activation_function_ptr(const ActivationFunction func, const bool deriv) {
return NULL;
}
Ref<MLPPVector> MLPPActivation::run_activation_vector(const ActivationFunction func, const Ref<MLPPVector> &z, const bool deriv) {
return Ref<MLPPVector>();
}
Ref<MLPPMatrix> MLPPActivation::run_activation_matrix(const ActivationFunction func, const Ref<MLPPMatrix> &z, const bool deriv) {
return Ref<MLPPMatrix>();
}
Ref<MLPPVector> MLPPActivation::run_activation_norm_vector(const ActivationFunction func, const Ref<MLPPVector> &z) {
return Ref<MLPPVector>();
}
Ref<MLPPMatrix> MLPPActivation::run_activation_norm_matrix(const ActivationFunction func, const Ref<MLPPMatrix> &z) {
return Ref<MLPPMatrix>();
}
Ref<MLPPVector> MLPPActivation::run_activation_deriv_vector(const ActivationFunction func, const Ref<MLPPVector> &z) {
return Ref<MLPPVector>();
}
Ref<MLPPMatrix> MLPPActivation::run_activation_deriv_matrix(const ActivationFunction func, const Ref<MLPPMatrix> &z) {
return Ref<MLPPMatrix>();
}
Ref<MLPPVector> MLPPActivation::activation(const Ref<MLPPVector> &z, real_t (*function)(real_t), const bool deriv) {
return Ref<MLPPVector>();
}
Ref<MLPPVector> MLPPActivation::activation_norm(const Ref<MLPPVector> &z, real_t (*function)(real_t)) {
return Ref<MLPPVector>();
}
Ref<MLPPVector> MLPPActivation::activation_deriv(const Ref<MLPPVector> &z, real_t (*function)(real_t)) {
return Ref<MLPPVector>();
}
/*
// TO DO: Implement this template activation
std::vector<real_t> MLPPActivation::activation(std::vector<real_t> z, bool deriv, real_t (*function)(real_t, bool)) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = function(z[i], true);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = function(z[i], deriv);
}
return a;
}
//ACTIVATION FUNCTIONS
//LINEAR
real_t MLPPActivation::linear_norm(real_t z) {
return z;
}
Ref<MLPPVector> MLPPActivation::linear_norm(const Ref<MLPPVector> &z) {
return z->duplicate();
}
Ref<MLPPMatrix> MLPPActivation::linear_norm(const Ref<MLPPMatrix> &z) {
return z->duplicate();
}
real_t MLPPActivation::linear_deriv(real_t z) {
return 1;
}
Ref<MLPPVector> MLPPActivation::linear_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.onevec(z.size());
}
Ref<MLPPMatrix> MLPPActivation::linear_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.onemat(z.size(), z[0].size());
}
//SIGMOID
real_t MLPPActivation::sigmoid_norm(real_t z) {
return 1 / (1 + exp(-z));
}
Ref<MLPPVector> MLPPActivation::sigmoid_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), alg.addition(alg.onevec(z.size()), alg.exp(alg.scalarMultiply(-1, z))));
}
Ref<MLPPMatrix> MLPPActivation::sigmoid_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.addition(alg.onemat(z.size(), z[0].size()), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::sigmoid_deriv(real_t z) {
return sigmoid_norm(z) * (1 - sigmoid_norm(z));
}
Ref<MLPPVector> MLPPActivation::sigmoid_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), sigmoid(z)));
}
Ref<MLPPMatrix> MLPPActivation::sigmoid_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), sigmoid(z)));
}
//SOFTMAX
Ref<MLPPVector> MLPPActivation::softmax_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
std::vector<real_t> a;
a.resize(z.size());
std::vector<real_t> expZ = alg.exp(z);
real_t sum = 0;
for (int i = 0; i < z.size(); i++) {
sum += expZ[i];
}
for (int i = 0; i < z.size(); i++) {
a[i] = expZ[i] / sum;
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::softmax_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = softmax(z[i]);
}
return a;
}
Ref<MLPPVector> MLPPActivation::softmax_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
std::vector<real_t> a;
a.resize(z.size());
std::vector<real_t> expZ = alg.exp(z);
real_t sum = 0;
for (int i = 0; i < z.size(); i++) {
sum += expZ[i];
}
for (int i = 0; i < z.size(); i++) {
a[i] = expZ[i] / sum;
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::softmax_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = softmax(z[i]);
}
return a;
}
//ADJ_SOFTMAX
Ref<MLPPVector> MLPPActivation::adj_softmax_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
std::vector<real_t> a;
real_t C = -*std::max_element(z.begin(), z.end());
z = alg.scalarAdd(C, z);
return softmax(z);
}
Ref<MLPPMatrix> MLPPActivation::adj_softmax_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = adjSoftmax(z[i]);
}
return a;
}
Ref<MLPPVector> MLPPActivation::adj_softmax(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
std::vector<real_t> a;
real_t C = -*std::max_element(z.begin(), z.end());
z = alg.scalarAdd(C, z);
return softmax(z);
}
Ref<MLPPMatrix> MLPPActivation::adj_softmax(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = adjSoftmax(z[i]);
}
return a;
}
//SOFTMAX DERIV
Ref<MLPPMatrix> MLPPActivation::softmax_deriv_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> deriv;
std::vector<real_t> a = softmax(z);
deriv.resize(a.size());
for (int i = 0; i < deriv.size(); i++) {
deriv[i].resize(a.size());
}
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < z.size(); j++) {
if (i == j) {
deriv[i][j] = a[i] * (1 - a[i]);
} else {
deriv[i][j] = -a[i] * a[j];
}
}
}
return deriv;
}
std::vector<Ref<MLPPMatrix>> MLPPActivation::softmax_deriv_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
std::vector<std::vector<std::vector<real_t>>> deriv;
std::vector<std::vector<real_t>> a = softmax(z);
deriv.resize(a.size());
for (int i = 0; i < deriv.size(); i++) {
deriv[i].resize(a.size());
}
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < z.size(); j++) {
if (i == j) {
deriv[i][j] = alg.subtraction(a[i], alg.hadamard_product(a[i], a[i]));
} else {
deriv[i][j] = alg.scalarMultiply(-1, alg.hadamard_product(a[i], a[j]));
}
}
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::softmax_deriv_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> deriv;
std::vector<real_t> a = softmax(z);
deriv.resize(a.size());
for (int i = 0; i < deriv.size(); i++) {
deriv[i].resize(a.size());
}
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < z.size(); j++) {
if (i == j) {
deriv[i][j] = a[i] * (1 - a[i]);
} else {
deriv[i][j] = -a[i] * a[j];
}
}
}
return deriv;
}
std::vector<Ref<MLPPMatrix>> MLPPActivation::softmax_deriv_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
std::vector<std::vector<std::vector<real_t>>> deriv;
std::vector<std::vector<real_t>> a = softmax(z);
deriv.resize(a.size());
for (int i = 0; i < deriv.size(); i++) {
deriv[i].resize(a.size());
}
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < z.size(); j++) {
if (i == j) {
deriv[i][j] = alg.subtraction(a[i], alg.hadamard_product(a[i], a[i]));
} else {
deriv[i][j] = alg.scalarMultiply(-1, alg.hadamard_product(a[i], a[j]));
}
}
}
return deriv;
}
//SOFTPLUS
real_t MLPPActivation::softplus_norm(real_t z) {
return std::log(1 + exp(z));
}
Ref<MLPPVector> MLPPActivation::softplus_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(alg.onevec(z.size()), alg.exp(z)));
}
Ref<MLPPMatrix> MLPPActivation::softplus_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(alg.onemat(z.size(), z[0].size()), alg.exp(z)));
}
real_t MLPPActivation::softplus_deriv(real_t z) {
return sigmoid(z);
}
Ref<MLPPVector> MLPPActivation::softplus_deriv(const Ref<MLPPVector> &z) {
return sigmoid(z);
}
Ref<MLPPMatrix> MLPPActivation::softplus_deriv(const Ref<MLPPMatrix> &z) {
return sigmoid(z);
}
//SOFTSIGN
real_t MLPPActivation::softsign_norm(real_t z) {
return z / (1 + abs(z));
}
Ref<MLPPVector> MLPPActivation::softsign_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(z, alg.addition(alg.onevec(z.size()), alg.abs(z)));
}
Ref<MLPPMatrix> MLPPActivation::softsign_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(z, alg.addition(alg.onemat(z.size(), z[0].size()), alg.abs(z)));
}
real_t MLPPActivation::softsign_deriv(real_t z) {
return 1 / ((1 + abs(z)) * (1 + abs(z)));
}
Ref<MLPPVector> MLPPActivation::softsign_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), alg.exponentiate(alg.addition(alg.onevec(z.size()), alg.abs(z)), 2));
}
Ref<MLPPMatrix> MLPPActivation::softsign_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.exponentiate(alg.addition(alg.onemat(z.size(), z[0].size()), alg.abs(z)), 2));
}
//GAUSSIANCDF
real_t MLPPActivation::gaussian_cdf_norm(real_t z) {
return 0.5 * (1 + erf(z / sqrt(2)));
}
Ref<MLPPVector> MLPPActivation::gaussian_cdf_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.addition(alg.onevec(z.size()), alg.erf(alg.scalarMultiply(1 / sqrt(2), z))));
}
Ref<MLPPMatrix> MLPPActivation::gaussian_cdf_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.addition(alg.onemat(z.size(), z[0].size()), alg.erf(alg.scalarMultiply(1 / sqrt(2), z))));
}
real_t MLPPActivation::gaussian_cdf_deriv(real_t z) {
return (1 / sqrt(2 * M_PI)) * exp(-z * z / 2);
}
Ref<MLPPVector> MLPPActivation::gaussian_cdf_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(1 / sqrt(2 * M_PI), alg.exp(alg.scalarMultiply(-1 / 2, alg.hadamard_product(z, z))));
}
Ref<MLPPMatrix> MLPPActivation::gaussian_cdf_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(1 / sqrt(2 * M_PI), alg.exp(alg.scalarMultiply(-1 / 2, alg.hadamard_product(z, z))));
}
//CLOGLOG
real_t MLPPActivation::cloglog_norm(real_t z) {
return 1 - exp(-exp(z));
}
Ref<MLPPVector> MLPPActivation::cloglog_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.exp(alg.scalarMultiply(-1, alg.exp(z)))));
}
Ref<MLPPMatrix> MLPPActivation::cloglog_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.exp(alg.scalarMultiply(-1, alg.exp(z)))));
}
real_t MLPPActivation::cloglog_deriv(real_t z) {
return exp(z - exp(z));
}
Ref<MLPPVector> MLPPActivation::cloglog_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.exp(alg.scalarMultiply(-1, alg.exp(z)));
}
Ref<MLPPMatrix> MLPPActivation::cloglog_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.exp(alg.scalarMultiply(-1, alg.exp(z)));
}
//LOGIT
real_t MLPPActivation::logit_norm(real_t z) {
return std::log(z / (1 - z));
}
Ref<MLPPVector> MLPPActivation::logit_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.log(alg.elementWiseDivision(z, alg.subtraction(alg.onevec(z.size()), z)));
}
Ref<MLPPMatrix> MLPPActivation::logit_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.log(alg.elementWiseDivision(z, alg.subtraction(alg.onemat(z.size(), z[0].size()), z)));
}
real_t MLPPActivation::logit_deriv(real_t z) {
return 1 / z - 1 / (z - 1);
}
Ref<MLPPVector> MLPPActivation::logit_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.subtraction(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(z, alg.onevec(z.size()))));
}
Ref<MLPPMatrix> MLPPActivation::logit_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.subtraction(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(z, alg.onemat(z.size(), z[0].size()))));
}
//UNITSTEP
real_t MLPPActivation::unit_step_norm(real_t z) {
return z < 0 ? 0 : 1;
}
Ref<MLPPVector> MLPPActivation::unit_step_norm(const Ref<MLPPVector> &z) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = unitStep(z[i]);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::unit_step_norm(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = unitStep(z[i]);
}
return a;
}
real_t MLPPActivation::unit_step_deriv(real_t z) {
return 0;
}
Ref<MLPPVector> MLPPActivation::unit_step_deriv(const Ref<MLPPVector> &z) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = unitStep(z[i], 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::unit_step_deriv(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = unitStep(z[i], 1);
}
return deriv;
}
//SWISH
real_t MLPPActivation::swish_norm(real_t z) {
return z * sigmoid(z);
}
Ref<MLPPVector> MLPPActivation::swish_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(z, sigmoid(z));
}
Ref<MLPPMatrix> MLPPActivation::swish_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(z, sigmoid(z));
}
real_t MLPPActivation::swish_deriv(real_t z) {
return swish(z) + sigmoid(z) * (1 - swish(z));
}
Ref<MLPPVector> MLPPActivation::swish_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
alg.addition(swish(z), alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), swish(z))));
}
Ref<MLPPMatrix> MLPPActivation::swish_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
alg.addition(swish(z), alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), swish(z))));
}
//MISH
real_t MLPPActivation::mish_norm(real_t z) {
return z * tanh(softplus(z));
}
Ref<MLPPVector> MLPPActivation::mish_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(z, tanh(softplus(z)));
}
Ref<MLPPMatrix> MLPPActivation::mish_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(z, tanh(softplus(z)));
}
real_t MLPPActivation::mish_deriv(real_t z) {
return sech(softplus(z)) * sech(softplus(z)) * z * sigmoid(z) + mish(z) / z;
}
Ref<MLPPVector> MLPPActivation::mish_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.addition(alg.hadamard_product(alg.hadamard_product(alg.hadamard_product(sech(softplus(z)), sech(softplus(z))), z), sigmoid(z)), alg.elementWiseDivision(mish(z), z));
}
Ref<MLPPMatrix> MLPPActivation::mish_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.addition(alg.hadamard_product(alg.hadamard_product(alg.hadamard_product(sech(softplus(z)), sech(softplus(z))), z), sigmoid(z)), alg.elementWiseDivision(mish(z), z));
}
//SINC
real_t MLPPActivation::sinc_norm(real_t z) {
return std::sin(z) / z;
}
Ref<MLPPVector> MLPPActivation::sinc_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.sin(z), z);
}
Ref<MLPPMatrix> MLPPActivation::sinc_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.sin(z), z);
}
real_t MLPPActivation::sinc_deriv(real_t z) {
return (z * std::cos(z) - std::sin(z)) / (z * z);
}
Ref<MLPPVector> MLPPActivation::sinc_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.subtraction(alg.hadamard_product(z, alg.cos(z)), alg.sin(z)), alg.hadamard_product(z, z));
}
Ref<MLPPMatrix> MLPPActivation::sinc_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.subtraction(alg.hadamard_product(z, alg.cos(z)), alg.sin(z)), alg.hadamard_product(z, z));
}
//RELU
real_t MLPPActivation::relu_norm(real_t z) {
return fmax(0, z);
}
Ref<MLPPVector> MLPPActivation::relu_norm(const Ref<MLPPVector> &z) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = RELU(z[i]);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::relu_norm(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = RELU(z[i]);
}
return a;
}
real_t MLPPActivation::relu_deriv(real_t z) {
if (z <= 0) {
return 0;
} else {
return 1;
}
}
Ref<MLPPVector> MLPPActivation::relu_deriv(const Ref<MLPPVector> &z) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = RELU(z[i], 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::relu_deriv(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = RELU(z[i], 1);
}
return deriv;
}
//LEAKYRELU
real_t MLPPActivation::leaky_relu_norm(real_t z, real_t c) {
return fmax(c * z, z);
}
Ref<MLPPVector> MLPPActivation::leaky_relu_norm(const Ref<MLPPVector> &z, real_t c) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = leakyReLU(z[i], c);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::leaky_relu_norm(const Ref<MLPPMatrix> &z, real_t c) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = leakyReLU(z[i], c);
}
return a;
}
real_t MLPPActivation::leaky_relu_deriv(real_t z, real_t c) {
if (z <= 0) {
return c;
} else {
return 1;
}
}
Ref<MLPPVector> MLPPActivation::leaky_relu_deriv(const Ref<MLPPVector> &z, real_t c) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = leakyReLU(z[i], c, 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::leaky_relu_deriv(const Ref<MLPPMatrix> &z, real_t c) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = leakyReLU(z[i], c, 1);
}
return deriv;
}
//ELU
real_t MLPPActivation::elu_norm(real_t z, real_t c) {
if (z >= 0) {
return z;
} else {
return c * (exp(z) - 1);
}
}
Ref<MLPPVector> MLPPActivation::elu_norm(const Ref<MLPPVector> &z, real_t c) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = ELU(z[i], c);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::elu_norm(const Ref<MLPPMatrix> &z, real_t c) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = ELU(z[i], c);
}
return a;
}
real_t MLPPActivation::elu_deriv(real_t z, real_t c) {
if (z <= 0) {
return c * exp(z);
} else {
return 1;
}
}
Ref<MLPPVector> MLPPActivation::elu_deriv(const Ref<MLPPVector> &z, real_t c) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = ELU(z[i], c, 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::elu_deriv(const Ref<MLPPMatrix> &z, real_t c) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = ELU(z[i], c, 1);
}
return deriv;
}
//SELU
real_t MLPPActivation::selu_norm(real_t z, real_t lambda, real_t c) {
return lambda * ELU(z, c);
}
Ref<MLPPVector> MLPPActivation::selu_norm(const Ref<MLPPVector> &z, real_t lambda, real_t c) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = SELU(z[i], lambda, c);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::selu_norm(Ref<MLPPMatrix>, real_t lambda, real_t c) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = SELU(z[i], lambda, c);
}
return a;
}
real_t MLPPActivation::selu_deriv(real_t z, real_t lambda, real_t c) {
return ELU(z, c, 1);
}
Ref<MLPPVector> MLPPActivation::selu_deriv(const Ref<MLPPVector> &z, real_t lambda, real_t c) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = SELU(z[i], lambda, c, 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::selu_deriv(Ref<MLPPMatrix>, real_t lambda, real_t c) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = SELU(z[i], lambda, c, 1);
}
return deriv;
}
//GELU
real_t MLPPActivation::gelu_norm(real_t z) {
return 0.5 * z * (1 + tanh(sqrt(2 / M_PI) * (z + 0.044715 * std::pow(z, 3))));
}
Ref<MLPPVector> MLPPActivation::gelu_norm(const Ref<MLPPVector> &z) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = GELU(z[i]);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::gelu_norm(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = GELU(z[i]);
}
return a;
}
real_t MLPPActivation::gelu_deriv(real_t z) {
return 0.5 * tanh(0.0356774 * std::pow(z, 3) + 0.797885 * z) + (0.0535161 * std::pow(z, 3) + 0.398942 * z) * std::pow(sech(0.0356774 * std::pow(z, 3) + 0.797885 * z), 2) + 0.5;
}
Ref<MLPPVector> MLPPActivation::gelu_deriv(const Ref<MLPPVector> &z) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = GELU(z[i], 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::gelu_deriv(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = GELU(z[i], 1);
}
return deriv;
}
//SIGN
real_t MLPPActivation::sign_norm(real_t z) {
if (z < 0) {
return -1;
} else if (z == 0) {
return 0;
} else {
return 1;
}
}
Ref<MLPPVector> MLPPActivation::sign_norm(const Ref<MLPPVector> &z) {
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = sign(z[i]);
}
return a;
}
Ref<MLPPMatrix> MLPPActivation::sign_norm(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = sign(z[i]);
}
return a;
}
real_t MLPPActivation::sign_deriv(real_t z) {
return 0;
}
Ref<MLPPVector> MLPPActivation::sign_deriv(const Ref<MLPPVector> &z) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = sign(z[i], 1);
}
return deriv;
}
Ref<MLPPMatrix> MLPPActivation::sign_deriv(const Ref<MLPPMatrix> &z) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = sign(z[i], 1);
}
return deriv;
}
//SINH
real_t MLPPActivation::sinh_norm(real_t z) {
return 0.5 * (exp(z) - exp(-z));
}
Ref<MLPPVector> MLPPActivation::sinh_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
Ref<MLPPMatrix> MLPPActivation::sinh_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::sinh_deriv(real_t z) {
return cosh(z);
}
Ref<MLPPVector> MLPPActivation::sinh_deriv(const Ref<MLPPVector> &z) {
return cosh(z);
}
Ref<MLPPMatrix> MLPPActivation::sinh_deriv(const Ref<MLPPMatrix> &z) {
return cosh(z);
}
//COSH
real_t MLPPActivation::cosh_norm(real_t z) {
return 0.5 * (exp(z) + exp(-z));
}
Ref<MLPPVector> MLPPActivation::cosh_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
Ref<MLPPMatrix> MLPPActivation::cosh_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::cosh_deriv(real_t z) {
return sinh(z);
}
Ref<MLPPVector> MLPPActivation::cosh_deriv(const Ref<MLPPVector> &z) {
return sinh(z);
}
Ref<MLPPMatrix> MLPPActivation::cosh_deriv(const Ref<MLPPMatrix> &z) {
return sinh(z);
}
//TANH
real_t MLPPActivation::tanh_norm(real_t z) {
return (exp(z) - exp(-z)) / (exp(z) + exp(-z));
}
Ref<MLPPVector> MLPPActivation::tanh_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))), alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
Ref<MLPPMatrix> MLPPActivation::tanh_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))), alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::tanh_deriv(real_t z) {
return 1 - tanh(z) * tanh(z);
}
Ref<MLPPVector> MLPPActivation::tanh_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.hadamard_product(tanh(z), tanh(z))));
}
Ref<MLPPMatrix> MLPPActivation::tanh_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.hadamard_product(tanh(z), tanh(z))));
}
//CSCH
real_t MLPPActivation::csch_norm(real_t z) {
return 1 / sinh(z);
}
Ref<MLPPVector> MLPPActivation::csch_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), sinh(z));
}
Ref<MLPPMatrix> MLPPActivation::csch_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), sinh(z));
}
real_t MLPPActivation::csch_deriv(real_t z) {
return -csch(z) * coth(z);
}
Ref<MLPPVector> MLPPActivation::csch_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), coth(z));
}
Ref<MLPPMatrix> MLPPActivation::csch_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), coth(z));
}
//SECH
real_t MLPPActivation::sech_norm(real_t z) {
return 1 / cosh(z);
}
Ref<MLPPVector> MLPPActivation::sech_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), cosh(z));
// return activation(z, deriv, static_cast<void (*)(real_t, bool)>(&sech));
}
Ref<MLPPMatrix> MLPPActivation::sech_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), cosh(z));
// return activation(z, deriv, static_cast<void (*)(real_t, bool)>(&sech));
}
real_t MLPPActivation::sech_deriv(real_t z) {
return -sech(z) * tanh(z);
}
Ref<MLPPVector> MLPPActivation::sech_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(alg.scalarMultiply(-1, sech(z)), tanh(z));
}
Ref<MLPPMatrix> MLPPActivation::sech_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(alg.scalarMultiply(-1, sech(z)), tanh(z));
}
//COTH
real_t MLPPActivation::coth_norm(real_t z) {
return 1 / tanh(z);
}
Ref<MLPPVector> MLPPActivation::coth_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), tanh(z));
}
Ref<MLPPMatrix> MLPPActivation::coth_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), tanh(z));
}
real_t MLPPActivation::coth_deriv(real_t z) {
return -csch(z) * csch(z);
}
Ref<MLPPVector> MLPPActivation::coth_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), csch(z));
}
Ref<MLPPMatrix> MLPPActivation::coth_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), csch(z));
}
//ARSINH
real_t MLPPActivation::arsinh_norm(real_t z) {
return std::log(z + sqrt(z * z + 1));
}
Ref<MLPPVector> MLPPActivation::arsinh_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(z, alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onevec(z.size())))));
}
Ref<MLPPMatrix> MLPPActivation::arsinh_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(z, alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::arsinh_deriv(real_t z) {
return 1 / sqrt(z * z + 1);
}
Ref<MLPPVector> MLPPActivation::arsinh_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onevec(z.size()))));
}
Ref<MLPPMatrix> MLPPActivation::arsinh_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size()))));
}
//ARCOSH
real_t MLPPActivation::arcosh_norm(real_t z) {
return std::log(z + sqrt(z * z - 1));
}
Ref<MLPPVector> MLPPActivation::arcosh_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(z, alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onevec(z.size())))));
}
Ref<MLPPMatrix> MLPPActivation::arcosh_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(z, alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::arcosh_deriv(real_t z) {
return 1 / sqrt(z * z - 1);
}
Ref<MLPPVector> MLPPActivation::arcosh_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onevec(z.size()))));
}
Ref<MLPPMatrix> MLPPActivation::arcosh_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size()))));
}
//ARTANH
real_t MLPPActivation::artanh_norm(real_t z) {
return 0.5 * std::log((1 + z) / (1 - z));
}
Ref<MLPPVector> MLPPActivation::artanh_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onevec(z.size()), z), alg.subtraction(alg.onevec(z.size()), z))));
}
Ref<MLPPMatrix> MLPPActivation::artanh_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onemat(z.size(), z[0].size()), z), alg.subtraction(alg.onemat(z.size(), z[0].size()), z))));
}
real_t MLPPActivation::artanh_deriv(real_t z) {
return 1 / (1 - z * z);
}
Ref<MLPPVector> MLPPActivation::artanh_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z)));
}
Ref<MLPPMatrix> MLPPActivation::artanh_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)));
}
//ARCSCH
real_t MLPPActivation::arcsch_norm(real_t z) {
return std::log(sqrt(1 + (1 / (z * z))) + (1 / z));
}
Ref<MLPPVector> MLPPActivation::arcsch_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(alg.sqrt(alg.addition(alg.onevec(z.size()), alg.elementWiseDivision(alg.onevec(z.size()), alg.hadamard_product(z, z)))), alg.elementWiseDivision(alg.onevec(z.size()), z)));
}
Ref<MLPPMatrix> MLPPActivation::arcsch_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(alg.sqrt(alg.addition(alg.onemat(z.size(), z[0].size()), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)))), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z)));
}
real_t MLPPActivation::arcsch_deriv(real_t z) {
return -1 / ((z * z) * sqrt(1 + (1 / (z * z))));
}
Ref<MLPPVector> MLPPActivation::arcsch_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.full(z.size(), -1), alg.hadamard_product(alg.hadamard_product(z, z), alg.sqrt(alg.addition(alg.onevec(z.size()), alg.elementWiseDivision(alg.onevec(z.size()), alg.hadamard_product(z, z))))));
}
Ref<MLPPMatrix> MLPPActivation::arcsch_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.full(z.size(), z[0].size(), -1), alg.hadamard_product(alg.hadamard_product(z, z), alg.sqrt(alg.addition(alg.onemat(z.size(), z[0].size()), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z))))));
}
//ARSECH
real_t MLPPActivation::arsech_norm(real_t z) {
return std::log((1 / z) + ((1 / z) + 1) * ((1 / z) - 1));
}
Ref<MLPPVector> MLPPActivation::arsech_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.hadamard_product(alg.addition(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.onevec(z.size())), alg.subtraction(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.onevec(z.size())))));
}
Ref<MLPPMatrix> MLPPActivation::arsech_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.log(alg.addition(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.hadamard_product(alg.addition(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.onemat(z.size(), z[0].size())), alg.subtraction(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::arsech_deriv(real_t z) {
return -1 / (z * sqrt(1 - z * z));
}
Ref<MLPPVector> MLPPActivation::arsech_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.full(z.size(), -1), alg.hadamard_product(z, alg.sqrt(alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z)))));
}
Ref<MLPPMatrix> MLPPActivation::arsech_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.full(z.size(), z[0].size(), -1), alg.hadamard_product(z, alg.sqrt(alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)))));
}
//ARCOTH
real_t MLPPActivation::arcoth_norm(real_t z) {
return 0.5 * std::log((1 + z) / (z - 1));
}
Ref<MLPPVector> MLPPActivation::arcoth_norm(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onevec(z.size()), z), alg.subtraction(z, alg.onevec(z.size())))));
}
Ref<MLPPMatrix> MLPPActivation::arcoth_norm(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onemat(z.size(), z[0].size()), z), alg.subtraction(z, alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::arcoth_deriv(real_t z) {
return 1 / (1 - z * z);
}
Ref<MLPPVector> MLPPActivation::arcoth_deriv(const Ref<MLPPVector> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z)));
}
Ref<MLPPMatrix> MLPPActivation::arcoth_deriv(const Ref<MLPPMatrix> &z) {
MLPPLinAlg alg;
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)));
}
*/
//======================== OLD =============================
real_t MLPPActivation::linear(real_t z, bool deriv) {
if (deriv) {
return 1;
}
return z;
}
std::vector<real_t> MLPPActivation::linear(std::vector<real_t> z, bool deriv) {
if (deriv) {
MLPPLinAlg alg;
return alg.onevec(z.size());
}
return z;
}
std::vector<std::vector<real_t>> MLPPActivation::linear(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
MLPPLinAlg alg;
return alg.onemat(z.size(), z[0].size());
}
return z;
}
real_t MLPPActivation::sigmoid(real_t z, bool deriv) {
if (deriv) {
return sigmoid(z) * (1 - sigmoid(z));
}
return 1 / (1 + exp(-z));
}
std::vector<real_t> MLPPActivation::sigmoid(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), sigmoid(z)));
}
return alg.elementWiseDivision(alg.onevec(z.size()), alg.addition(alg.onevec(z.size()), alg.exp(alg.scalarMultiply(-1, z))));
}
std::vector<std::vector<real_t>> MLPPActivation::sigmoid(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), sigmoid(z)));
}
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.addition(alg.onemat(z.size(), z[0].size()), alg.exp(alg.scalarMultiply(-1, z))));
}
std::vector<real_t> MLPPActivation::softmax(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
std::vector<real_t> a;
a.resize(z.size());
std::vector<real_t> expZ = alg.exp(z);
real_t sum = 0;
for (int i = 0; i < z.size(); i++) {
sum += expZ[i];
}
for (int i = 0; i < z.size(); i++) {
a[i] = expZ[i] / sum;
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::softmax(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = softmax(z[i]);
}
return a;
}
std::vector<real_t> MLPPActivation::adjSoftmax(std::vector<real_t> z) {
MLPPLinAlg alg;
std::vector<real_t> a;
real_t C = -*std::max_element(z.begin(), z.end());
z = alg.scalarAdd(C, z);
return softmax(z);
}
std::vector<std::vector<real_t>> MLPPActivation::adjSoftmax(std::vector<std::vector<real_t>> z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = adjSoftmax(z[i]);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::softmaxDeriv(std::vector<real_t> z) {
MLPPLinAlg alg;
std::vector<std::vector<real_t>> deriv;
std::vector<real_t> a = softmax(z);
deriv.resize(a.size());
for (int i = 0; i < deriv.size(); i++) {
deriv[i].resize(a.size());
}
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < z.size(); j++) {
if (i == j) {
deriv[i][j] = a[i] * (1 - a[i]);
} else {
deriv[i][j] = -a[i] * a[j];
}
}
}
return deriv;
}
std::vector<std::vector<std::vector<real_t>>> MLPPActivation::softmaxDeriv(std::vector<std::vector<real_t>> z) {
MLPPLinAlg alg;
std::vector<std::vector<std::vector<real_t>>> deriv;
std::vector<std::vector<real_t>> a = softmax(z);
deriv.resize(a.size());
for (int i = 0; i < deriv.size(); i++) {
deriv[i].resize(a.size());
}
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < z.size(); j++) {
if (i == j) {
deriv[i][j] = alg.subtraction(a[i], alg.hadamard_product(a[i], a[i]));
} else {
deriv[i][j] = alg.scalarMultiply(-1, alg.hadamard_product(a[i], a[j]));
}
}
}
return deriv;
}
real_t MLPPActivation::softplus(real_t z, bool deriv) {
if (deriv) {
return sigmoid(z);
}
return std::log(1 + exp(z));
}
std::vector<real_t> MLPPActivation::softplus(std::vector<real_t> z, bool deriv) {
if (deriv) {
return sigmoid(z);
}
MLPPLinAlg alg;
return alg.log(alg.addition(alg.onevec(z.size()), alg.exp(z)));
}
std::vector<std::vector<real_t>> MLPPActivation::softplus(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
return sigmoid(z);
}
MLPPLinAlg alg;
return alg.log(alg.addition(alg.onemat(z.size(), z[0].size()), alg.exp(z)));
}
real_t MLPPActivation::softsign(real_t z, bool deriv) {
if (deriv) {
return 1 / ((1 + abs(z)) * (1 + abs(z)));
}
return z / (1 + abs(z));
}
std::vector<real_t> MLPPActivation::softsign(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onevec(z.size()), alg.exponentiate(alg.addition(alg.onevec(z.size()), alg.abs(z)), 2));
}
return alg.elementWiseDivision(z, alg.addition(alg.onevec(z.size()), alg.abs(z)));
}
std::vector<std::vector<real_t>> MLPPActivation::softsign(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.exponentiate(alg.addition(alg.onemat(z.size(), z[0].size()), alg.abs(z)), 2));
}
return alg.elementWiseDivision(z, alg.addition(alg.onemat(z.size(), z[0].size()), alg.abs(z)));
}
real_t MLPPActivation::gaussianCDF(real_t z, bool deriv) {
if (deriv) {
return (1 / sqrt(2 * M_PI)) * exp(-z * z / 2);
}
return 0.5 * (1 + erf(z / sqrt(2)));
}
std::vector<real_t> MLPPActivation::gaussianCDF(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.scalarMultiply(1 / sqrt(2 * M_PI), alg.exp(alg.scalarMultiply(-1 / 2, alg.hadamard_product(z, z))));
}
return alg.scalarMultiply(0.5, alg.addition(alg.onevec(z.size()), alg.erf(alg.scalarMultiply(1 / sqrt(2), z))));
}
std::vector<std::vector<real_t>> MLPPActivation::gaussianCDF(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.scalarMultiply(1 / sqrt(2 * M_PI), alg.exp(alg.scalarMultiply(-1 / 2, alg.hadamard_product(z, z))));
}
return alg.scalarMultiply(0.5, alg.addition(alg.onemat(z.size(), z[0].size()), alg.erf(alg.scalarMultiply(1 / sqrt(2), z))));
}
real_t MLPPActivation::cloglog(real_t z, bool deriv) {
if (deriv) {
return exp(z - exp(z));
}
return 1 - exp(-exp(z));
}
std::vector<real_t> MLPPActivation::cloglog(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.exp(alg.scalarMultiply(-1, alg.exp(z)));
}
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.exp(alg.scalarMultiply(-1, alg.exp(z)))));
}
std::vector<std::vector<real_t>> MLPPActivation::cloglog(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.exp(alg.scalarMultiply(-1, alg.exp(z)));
}
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.exp(alg.scalarMultiply(-1, alg.exp(z)))));
}
real_t MLPPActivation::logit(real_t z, bool deriv) {
if (deriv) {
return 1 / z - 1 / (z - 1);
}
return std::log(z / (1 - z));
}
std::vector<real_t> MLPPActivation::logit(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.subtraction(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(z, alg.onevec(z.size()))));
}
return alg.log(alg.elementWiseDivision(z, alg.subtraction(alg.onevec(z.size()), z)));
}
std::vector<std::vector<real_t>> MLPPActivation::logit(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.subtraction(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(z, alg.onemat(z.size(), z[0].size()))));
}
return alg.log(alg.elementWiseDivision(z, alg.subtraction(alg.onemat(z.size(), z[0].size()), z)));
}
real_t MLPPActivation::unitStep(real_t z, bool deriv) {
if (deriv) {
return 0;
}
return z < 0 ? 0 : 1;
}
std::vector<real_t> MLPPActivation::unitStep(std::vector<real_t> z, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = unitStep(z[i], 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = unitStep(z[i]);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::unitStep(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = unitStep(z[i], 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = unitStep(z[i]);
}
return a;
}
real_t MLPPActivation::swish(real_t z, bool deriv) {
if (deriv) {
return swish(z) + sigmoid(z) * (1 - swish(z));
}
return z * sigmoid(z);
}
std::vector<real_t> MLPPActivation::swish(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
alg.addition(swish(z), alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), swish(z))));
}
return alg.hadamard_product(z, sigmoid(z));
}
std::vector<std::vector<real_t>> MLPPActivation::swish(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
alg.addition(swish(z), alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), swish(z))));
}
return alg.hadamard_product(z, sigmoid(z));
}
real_t MLPPActivation::mish(real_t z, bool deriv) {
if (deriv) {
return sech(softplus(z)) * sech(softplus(z)) * z * sigmoid(z) + mish(z) / z;
}
return z * tanh(softplus(z));
}
std::vector<real_t> MLPPActivation::mish(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.addition(alg.hadamard_product(alg.hadamard_product(alg.hadamard_product(sech(softplus(z)), sech(softplus(z))), z), sigmoid(z)), alg.elementWiseDivision(mish(z), z));
}
return alg.hadamard_product(z, tanh(softplus(z)));
}
std::vector<std::vector<real_t>> MLPPActivation::mish(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.addition(alg.hadamard_product(alg.hadamard_product(alg.hadamard_product(sech(softplus(z)), sech(softplus(z))), z), sigmoid(z)), alg.elementWiseDivision(mish(z), z));
}
return alg.hadamard_product(z, tanh(softplus(z)));
}
real_t MLPPActivation::sinc(real_t z, bool deriv) {
if (deriv) {
return (z * std::cos(z) - std::sin(z)) / (z * z);
}
return std::sin(z) / z;
}
std::vector<real_t> MLPPActivation::sinc(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.subtraction(alg.hadamard_product(z, alg.cos(z)), alg.sin(z)), alg.hadamard_product(z, z));
}
return alg.elementWiseDivision(alg.sin(z), z);
}
std::vector<std::vector<real_t>> MLPPActivation::sinc(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.subtraction(alg.hadamard_product(z, alg.cos(z)), alg.sin(z)), alg.hadamard_product(z, z));
}
return alg.elementWiseDivision(alg.sin(z), z);
}
real_t MLPPActivation::RELU(real_t z, bool deriv) {
if (deriv) {
if (z <= 0) {
return 0;
} else {
return 1;
}
}
return fmax(0, z);
}
std::vector<real_t> MLPPActivation::RELU(std::vector<real_t> z, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = RELU(z[i], 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = RELU(z[i]);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::RELU(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = RELU(z[i], 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = RELU(z[i]);
}
return a;
}
real_t MLPPActivation::leakyReLU(real_t z, real_t c, bool deriv) {
if (deriv) {
if (z <= 0) {
return c;
} else {
return 1;
}
}
return fmax(c * z, z);
}
std::vector<real_t> MLPPActivation::leakyReLU(std::vector<real_t> z, real_t c, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = leakyReLU(z[i], c, 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = leakyReLU(z[i], c);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::leakyReLU(std::vector<std::vector<real_t>> z, real_t c, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = leakyReLU(z[i], c, 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = leakyReLU(z[i], c);
}
return a;
}
real_t MLPPActivation::ELU(real_t z, real_t c, bool deriv) {
if (deriv) {
if (z <= 0) {
return c * exp(z);
} else {
return 1;
}
}
if (z >= 0) {
return z;
} else {
return c * (exp(z) - 1);
}
}
std::vector<real_t> MLPPActivation::ELU(std::vector<real_t> z, real_t c, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = ELU(z[i], c, 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = ELU(z[i], c);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::ELU(std::vector<std::vector<real_t>> z, real_t c, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = ELU(z[i], c, 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = ELU(z[i], c);
}
return a;
}
real_t MLPPActivation::SELU(real_t z, real_t lambda, real_t c, bool deriv) {
if (deriv) {
return ELU(z, c, true);
}
return lambda * ELU(z, c);
}
std::vector<real_t> MLPPActivation::SELU(std::vector<real_t> z, real_t lambda, real_t c, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = SELU(z[i], lambda, c, 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = SELU(z[i], lambda, c);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::SELU(std::vector<std::vector<real_t>> z, real_t lambda, real_t c, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = SELU(z[i], lambda, c, 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = SELU(z[i], lambda, c);
}
return a;
}
real_t MLPPActivation::GELU(real_t z, bool deriv) {
if (deriv) {
return 0.5 * tanh(0.0356774 * std::pow(z, 3) + 0.797885 * z) + (0.0535161 * std::pow(z, 3) + 0.398942 * z) * std::pow(sech(0.0356774 * std::pow(z, 3) + 0.797885 * z), 2) + 0.5;
}
return 0.5 * z * (1 + tanh(sqrt(2 / M_PI) * (z + 0.044715 * std::pow(z, 3))));
}
std::vector<real_t> MLPPActivation::GELU(std::vector<real_t> z, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = GELU(z[i], 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = GELU(z[i]);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::GELU(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = GELU(z[i], 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = GELU(z[i]);
}
return a;
}
real_t MLPPActivation::sign(real_t z, bool deriv) {
if (deriv) {
return 0;
}
if (z < 0) {
return -1;
} else if (z == 0) {
return 0;
} else {
return 1;
}
}
std::vector<real_t> MLPPActivation::sign(std::vector<real_t> z, bool deriv) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = sign(z[i], 1);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = sign(z[i]);
}
return a;
}
std::vector<std::vector<real_t>> MLPPActivation::sign(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
std::vector<std::vector<real_t>> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = sign(z[i], 1);
}
return deriv;
}
std::vector<std::vector<real_t>> a;
a.resize(z.size());
for (int i = 0; i < a.size(); i++) {
a[i] = sign(z[i]);
}
return a;
}
real_t MLPPActivation::sinh(real_t z, bool deriv) {
if (deriv) {
return cosh(z);
}
return 0.5 * (exp(z) - exp(-z));
}
std::vector<real_t> MLPPActivation::sinh(std::vector<real_t> z, bool deriv) {
if (deriv) {
return cosh(z);
}
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
std::vector<std::vector<real_t>> MLPPActivation::sinh(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
return cosh(z);
}
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::cosh(real_t z, bool deriv) {
if (deriv) {
return sinh(z);
}
return 0.5 * (exp(z) + exp(-z));
}
std::vector<real_t> MLPPActivation::cosh(std::vector<real_t> z, bool deriv) {
if (deriv) {
return sinh(z);
}
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
std::vector<std::vector<real_t>> MLPPActivation::cosh(std::vector<std::vector<real_t>> z, bool deriv) {
if (deriv) {
return sinh(z);
}
MLPPLinAlg alg;
return alg.scalarMultiply(0.5, alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::tanh(real_t z, bool deriv) {
if (deriv) {
return 1 - tanh(z) * tanh(z);
}
return (exp(z) - exp(-z)) / (exp(z) + exp(-z));
}
std::vector<real_t> MLPPActivation::tanh(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.hadamard_product(tanh(z), tanh(z))));
}
return alg.elementWiseDivision(alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))), alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
std::vector<std::vector<real_t>> MLPPActivation::tanh(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.hadamard_product(tanh(z), tanh(z))));
}
return alg.elementWiseDivision(alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))), alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))));
}
real_t MLPPActivation::csch(real_t z, bool deriv) {
if (deriv) {
return -csch(z) * coth(z);
}
return 1 / sinh(z);
}
std::vector<real_t> MLPPActivation::csch(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), coth(z));
}
return alg.elementWiseDivision(alg.onevec(z.size()), sinh(z));
}
std::vector<std::vector<real_t>> MLPPActivation::csch(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), coth(z));
}
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), sinh(z));
}
real_t MLPPActivation::sech(real_t z, bool deriv) {
if (deriv) {
return -sech(z) * tanh(z);
}
return 1 / cosh(z);
}
std::vector<real_t> MLPPActivation::sech(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.hadamard_product(alg.scalarMultiply(-1, sech(z)), tanh(z));
}
return alg.elementWiseDivision(alg.onevec(z.size()), cosh(z));
// return activation(z, deriv, static_cast<void (*)(real_t, bool)>(&sech));
}
std::vector<std::vector<real_t>> MLPPActivation::sech(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.hadamard_product(alg.scalarMultiply(-1, sech(z)), tanh(z));
}
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), cosh(z));
// return activation(z, deriv, static_cast<void (*)(real_t, bool)>(&sech));
}
real_t MLPPActivation::coth(real_t z, bool deriv) {
if (deriv) {
return -csch(z) * csch(z);
}
return 1 / tanh(z);
}
std::vector<real_t> MLPPActivation::coth(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), csch(z));
}
return alg.elementWiseDivision(alg.onevec(z.size()), tanh(z));
}
std::vector<std::vector<real_t>> MLPPActivation::coth(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), csch(z));
}
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), tanh(z));
}
real_t MLPPActivation::arsinh(real_t z, bool deriv) {
if (deriv) {
return 1 / sqrt(z * z + 1);
}
return std::log(z + sqrt(z * z + 1));
}
std::vector<real_t> MLPPActivation::arsinh(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onevec(z.size()), alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onevec(z.size()))));
}
return alg.log(alg.addition(z, alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onevec(z.size())))));
}
std::vector<std::vector<real_t>> MLPPActivation::arsinh(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size()))));
}
return alg.log(alg.addition(z, alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::arcosh(real_t z, bool deriv) {
if (deriv) {
return 1 / sqrt(z * z - 1);
}
return std::log(z + sqrt(z * z - 1));
}
std::vector<real_t> MLPPActivation::arcosh(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onevec(z.size()), alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onevec(z.size()))));
}
return alg.log(alg.addition(z, alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onevec(z.size())))));
}
std::vector<std::vector<real_t>> MLPPActivation::arcosh(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size()))));
}
return alg.log(alg.addition(z, alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::artanh(real_t z, bool deriv) {
if (deriv) {
return 1 / (1 - z * z);
}
return 0.5 * std::log((1 + z) / (1 - z));
}
std::vector<real_t> MLPPActivation::artanh(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z)));
}
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onevec(z.size()), z), alg.subtraction(alg.onevec(z.size()), z))));
}
std::vector<std::vector<real_t>> MLPPActivation::artanh(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)));
}
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onemat(z.size(), z[0].size()), z), alg.subtraction(alg.onemat(z.size(), z[0].size()), z))));
}
real_t MLPPActivation::arcsch(real_t z, bool deriv) {
if (deriv) {
return -1 / ((z * z) * sqrt(1 + (1 / (z * z))));
}
return std::log(sqrt(1 + (1 / (z * z))) + (1 / z));
}
std::vector<real_t> MLPPActivation::arcsch(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.full(z.size(), -1), alg.hadamard_product(alg.hadamard_product(z, z), alg.sqrt(alg.addition(alg.onevec(z.size()), alg.elementWiseDivision(alg.onevec(z.size()), alg.hadamard_product(z, z))))));
}
return alg.log(alg.addition(alg.sqrt(alg.addition(alg.onevec(z.size()), alg.elementWiseDivision(alg.onevec(z.size()), alg.hadamard_product(z, z)))), alg.elementWiseDivision(alg.onevec(z.size()), z)));
}
std::vector<std::vector<real_t>> MLPPActivation::arcsch(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.full(z.size(), z[0].size(), -1), alg.hadamard_product(alg.hadamard_product(z, z), alg.sqrt(alg.addition(alg.onemat(z.size(), z[0].size()), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z))))));
}
return alg.log(alg.addition(alg.sqrt(alg.addition(alg.onemat(z.size(), z[0].size()), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)))), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z)));
}
real_t MLPPActivation::arsech(real_t z, bool deriv) {
if (deriv) {
return -1 / (z * sqrt(1 - z * z));
}
return std::log((1 / z) + ((1 / z) + 1) * ((1 / z) - 1));
}
std::vector<real_t> MLPPActivation::arsech(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.full(z.size(), -1), alg.hadamard_product(z, alg.sqrt(alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z)))));
}
return alg.log(alg.addition(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.hadamard_product(alg.addition(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.onevec(z.size())), alg.subtraction(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.onevec(z.size())))));
}
std::vector<std::vector<real_t>> MLPPActivation::arsech(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.full(z.size(), z[0].size(), -1), alg.hadamard_product(z, alg.sqrt(alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)))));
}
return alg.log(alg.addition(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.hadamard_product(alg.addition(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.onemat(z.size(), z[0].size())), alg.subtraction(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.onemat(z.size(), z[0].size())))));
}
real_t MLPPActivation::arcoth(real_t z, bool deriv) {
if (deriv) {
return 1 / (1 - z * z);
}
return 0.5 * std::log((1 + z) / (z - 1));
}
std::vector<real_t> MLPPActivation::arcoth(std::vector<real_t> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z)));
}
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onevec(z.size()), z), alg.subtraction(z, alg.onevec(z.size())))));
}
std::vector<std::vector<real_t>> MLPPActivation::arcoth(std::vector<std::vector<real_t>> z, bool deriv) {
MLPPLinAlg alg;
if (deriv) {
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)));
}
return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onemat(z.size(), z[0].size()), z), alg.subtraction(z, alg.onemat(z.size(), z[0].size())))));
}
// TO DO: Implement this template activation
std::vector<real_t> MLPPActivation::activation(std::vector<real_t> z, bool deriv, real_t (*function)(real_t, bool)) {
if (deriv) {
std::vector<real_t> deriv;
deriv.resize(z.size());
for (int i = 0; i < z.size(); i++) {
deriv[i] = function(z[i], true);
}
return deriv;
}
std::vector<real_t> a;
a.resize(z.size());
for (int i = 0; i < z.size(); i++) {
a[i] = function(z[i], deriv);
}
return a;
}