mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-08 13:12:09 +01:00
396 lines
14 KiB
C++
396 lines
14 KiB
C++
/*************************************************************************/
|
|
/* numerical_analysis.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "numerical_analysis.h"
|
|
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
#include "../lin_alg/mlpp_matrix.h"
|
|
#include "../lin_alg/mlpp_tensor3.h"
|
|
#include "../lin_alg/mlpp_vector.h"
|
|
|
|
real_t MLPPNumericalAnalysis::num_diffr(real_t (*function)(real_t), real_t x) {
|
|
real_t eps = 1e-10;
|
|
return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative.
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::num_diff_2r(real_t (*function)(real_t), real_t x) {
|
|
real_t eps = 1e-5;
|
|
return (function(x + 2 * eps) - 2 * function(x + eps) + function(x)) / (eps * eps);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::num_diff_3r(real_t (*function)(real_t), real_t x) {
|
|
real_t eps = 1e-5;
|
|
real_t t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps);
|
|
real_t t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x);
|
|
return (t1 - t2) / (eps * eps * eps);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::constant_approximationr(real_t (*function)(real_t), real_t c) {
|
|
return function(c);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::linear_approximationr(real_t (*function)(real_t), real_t c, real_t x) {
|
|
return constant_approximationr(function, c) + num_diffr(function, c) * (x - c);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::quadratic_approximationr(real_t (*function)(real_t), real_t c, real_t x) {
|
|
return linear_approximationr(function, c, x) + 0.5 * num_diff_2r(function, c) * (x - c) * (x - c);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::cubic_approximationr(real_t (*function)(real_t), real_t c, real_t x) {
|
|
return quadratic_approximationr(function, c, x) + (1 / 6) * num_diff_3r(function, c) * (x - c) * (x - c) * (x - c);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::num_diffv(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x, int axis) {
|
|
// For multivariable function analysis.
|
|
// This will be used for calculating Jacobian vectors.
|
|
// Diffrentiate with respect to indicated axis. (0, 1, 2 ...)
|
|
real_t eps = 1e-10;
|
|
Ref<MLPPVector> x_eps = x->duplicate_fast();
|
|
x_eps->element_get_ref(axis) += eps;
|
|
|
|
return (function(x_eps) - function(x)) / eps;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::num_diff_2v(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x, int axis1, int axis2) {
|
|
//For Hessians.
|
|
real_t eps = 1e-5;
|
|
|
|
Ref<MLPPVector> x_pp = x->duplicate_fast();
|
|
x_pp->element_get_ref(axis1) += eps;
|
|
x_pp->element_get_ref(axis2) += eps;
|
|
|
|
Ref<MLPPVector> x_np = x->duplicate_fast();
|
|
x_np->element_get_ref(axis2) += eps;
|
|
|
|
Ref<MLPPVector> x_pn = x->duplicate_fast();
|
|
x_pn->element_get_ref(axis1) += eps;
|
|
|
|
return (function(x_pp) - function(x_np) - function(x_pn) + function(x)) / (eps * eps);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::num_diff_3v(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x, int axis1, int axis2, int axis3) {
|
|
// For third order derivative tensors.
|
|
// NOTE: Approximations do not appear to be accurate for sinusodial functions...
|
|
// Should revisit this later.
|
|
real_t eps = 1e-5;
|
|
|
|
Ref<MLPPVector> x_ppp = x->duplicate_fast();
|
|
x_ppp->element_get_ref(axis1) += eps;
|
|
x_ppp->element_get_ref(axis2) += eps;
|
|
x_ppp->element_get_ref(axis3) += eps;
|
|
|
|
Ref<MLPPVector> x_npp = x->duplicate_fast();
|
|
x_npp->element_get_ref(axis2) += eps;
|
|
x_npp->element_get_ref(axis3) += eps;
|
|
|
|
Ref<MLPPVector> x_pnp = x->duplicate_fast();
|
|
x_pnp->element_get_ref(axis1) += eps;
|
|
x_pnp->element_get_ref(axis3) += eps;
|
|
|
|
Ref<MLPPVector> x_nnp = x->duplicate_fast();
|
|
x_nnp->element_get_ref(axis3) += eps;
|
|
|
|
Ref<MLPPVector> x_ppn = x->duplicate_fast();
|
|
x_ppn->element_get_ref(axis1) += eps;
|
|
x_ppn->element_get_ref(axis2) += eps;
|
|
|
|
Ref<MLPPVector> x_npn = x->duplicate_fast();
|
|
x_npn->element_get_ref(axis2) += eps;
|
|
|
|
Ref<MLPPVector> x_pnn = x->duplicate_fast();
|
|
x_pnn->element_get_ref(axis1) += eps;
|
|
|
|
real_t thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp);
|
|
real_t noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x);
|
|
return (thirdAxis - noThirdAxis) / (eps * eps * eps);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::newton_raphson_method(real_t (*function)(real_t), real_t x_0, real_t epoch_num) {
|
|
real_t x = x_0;
|
|
for (int i = 0; i < epoch_num; i++) {
|
|
x -= function(x) / num_diffr(function, x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::halley_method(real_t (*function)(real_t), real_t x_0, real_t epoch_num) {
|
|
real_t x = x_0;
|
|
for (int i = 0; i < epoch_num; i++) {
|
|
x -= ((2 * function(x) * num_diffr(function, x)) / (2 * num_diffr(function, x) * num_diffr(function, x) - function(x) * num_diff_2r(function, x)));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::inv_quadratic_interpolation(real_t (*function)(real_t), const Ref<MLPPVector> &x_0, int epoch_num) {
|
|
real_t x = 0;
|
|
Ref<MLPPVector> ct = x_0->duplicate_fast();
|
|
MLPPVector ¤t_three = *(ct.ptr());
|
|
|
|
for (int i = 0; i < epoch_num; i++) {
|
|
real_t t1 = ((function(current_three[1]) * function(current_three[2])) / ((function(current_three[0]) - function(current_three[1])) * (function(current_three[0]) - function(current_three[2])))) * current_three[0];
|
|
real_t t2 = ((function(current_three[0]) * function(current_three[2])) / ((function(current_three[1]) - function(current_three[0])) * (function(current_three[1]) - function(current_three[2])))) * current_three[1];
|
|
real_t t3 = ((function(current_three[0]) * function(current_three[1])) / ((function(current_three[2]) - function(current_three[0])) * (function(current_three[2]) - function(current_three[1])))) * current_three[2];
|
|
x = t1 + t2 + t3;
|
|
|
|
current_three.remove(0);
|
|
current_three.push_back(x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::eulerian_methodr(real_t (*derivative)(real_t), real_t q_0, real_t q_1, real_t p, real_t h) {
|
|
int max_epoch = static_cast<int>((p - q_0) / h);
|
|
real_t x = q_0;
|
|
real_t y = q_1;
|
|
for (int i = 0; i < max_epoch; i++) {
|
|
y = y + h * derivative(x);
|
|
x += h;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::eulerian_methodv(real_t (*derivative)(const Ref<MLPPVector> &), real_t q_0, real_t q_1, real_t p, real_t h) {
|
|
int max_epoch = static_cast<int>((p - q_0) / h);
|
|
|
|
Ref<MLPPVector> v;
|
|
v.instance();
|
|
v->resize(2);
|
|
|
|
real_t x = q_0;
|
|
real_t y = q_1;
|
|
for (int i = 0; i < max_epoch; i++) {
|
|
v->element_set(0, x);
|
|
v->element_set(1, y);
|
|
y = y + h * derivative(v);
|
|
x += h;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::growth_method(real_t C, real_t k, real_t t) {
|
|
//dP/dt = kP
|
|
//dP/P = kdt
|
|
//integral(1/P)dP = integral(k) dt
|
|
//ln|P| = kt + C_initial
|
|
//|P| = e^(kt + C_initial)
|
|
//|P| = e^(C_initial) * e^(kt)
|
|
//P = +/- e^(C_initial) * e^(kt)
|
|
//P = C * e^(kt)
|
|
|
|
// auto growthFunction = [&C, &k](real_t t) { return C * exp(k * t); };
|
|
return C * Math::exp(k * t);
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPNumericalAnalysis::jacobian(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x) {
|
|
Ref<MLPPVector> jacobian;
|
|
jacobian.instance();
|
|
jacobian->resize(x->size());
|
|
|
|
int jacobian_size = jacobian->size();
|
|
|
|
for (int i = 0; i < jacobian_size; ++i) {
|
|
jacobian->element_set(i, num_diffv(function, x, i)); // Derivative w.r.t axis i evaluated at x. For all x_i.
|
|
}
|
|
|
|
return jacobian;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPNumericalAnalysis::hessian(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x) {
|
|
Ref<MLPPMatrix> hessian;
|
|
hessian.instance();
|
|
hessian->resize(Size2i(x->size(), x->size()));
|
|
|
|
Size2i hessian_size = hessian->size();
|
|
|
|
for (int i = 0; i < hessian_size.y; i++) {
|
|
for (int j = 0; j < hessian_size.x; j++) {
|
|
hessian->element_set(i, j, num_diff_2v(function, x, i, j));
|
|
}
|
|
}
|
|
|
|
return hessian;
|
|
}
|
|
|
|
Ref<MLPPTensor3> MLPPNumericalAnalysis::third_order_tensor(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x) {
|
|
Ref<MLPPTensor3> tensor;
|
|
tensor.instance();
|
|
tensor->resize(Size3i(x->size(), x->size(), x->size()));
|
|
|
|
Size3i tensor_size = tensor->size();
|
|
|
|
for (int i = 0; i < tensor_size.z; i++) { // O(n^3) time complexity :(
|
|
for (int j = 0; j < tensor_size.y; j++) {
|
|
for (int k = 0; k < tensor_size.x; k++) {
|
|
tensor->element_set(i, j, k, num_diff_3v(function, x, i, j, k));
|
|
}
|
|
}
|
|
}
|
|
|
|
return tensor;
|
|
}
|
|
|
|
Vector<Ref<MLPPMatrix>> MLPPNumericalAnalysis::third_order_tensorvt(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x) {
|
|
int x_size = x->size();
|
|
|
|
Vector<Ref<MLPPMatrix>> tensor;
|
|
tensor.resize(x_size);
|
|
|
|
for (int i = 0; i < tensor.size(); i++) {
|
|
Ref<MLPPMatrix> m;
|
|
m.instance();
|
|
m->resize(Size2i(x_size, x_size));
|
|
|
|
tensor.write[i] = m;
|
|
}
|
|
|
|
for (int i = 0; i < tensor.size(); i++) { // O(n^3) time complexity :(
|
|
Ref<MLPPMatrix> m = tensor[i];
|
|
|
|
for (int j = 0; j < x_size; j++) {
|
|
for (int k = 0; k < x_size; k++) {
|
|
m->element_set(j, k, num_diff_3v(function, x, i, j, k));
|
|
}
|
|
}
|
|
}
|
|
|
|
return tensor;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::constant_approximationv(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &c) {
|
|
return function(c);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::linear_approximationv(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &c, const Ref<MLPPVector> &x) {
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPVector> j = jacobian(function, c);
|
|
Ref<MLPPMatrix> mj;
|
|
mj.instance();
|
|
mj->row_add_mlpp_vector(j);
|
|
|
|
Ref<MLPPVector> xsc = x->subn(c);
|
|
Ref<MLPPMatrix> mxsc;
|
|
mxsc.instance();
|
|
mxsc->row_add_mlpp_vector(xsc);
|
|
|
|
Ref<MLPPMatrix> m = mj->transposen()->multn(mxsc);
|
|
|
|
return constant_approximationv(function, c) + m->element_get(0, 0);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::quadratic_approximationv(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &c, const Ref<MLPPVector> &x) {
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPMatrix> h = hessian(function, c);
|
|
|
|
Ref<MLPPVector> xsc = x->subn(c);
|
|
Ref<MLPPMatrix> mxsc;
|
|
mxsc.instance();
|
|
mxsc->row_add_mlpp_vector(xsc);
|
|
|
|
Ref<MLPPMatrix> r = mxsc->multn(h->multn(mxsc->transposen()));
|
|
|
|
return linear_approximationv(function, c, x) + 0.5 * r->element_get(0, 0);
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::cubic_approximationv(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &c, const Ref<MLPPVector> &x) {
|
|
//Not completely sure as the literature seldom discusses the third order taylor approximation,
|
|
//in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies
|
|
//should look something like this:
|
|
|
|
//(N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N)
|
|
//Perform remaining multiplies as done for the 2nd order approximation.
|
|
//Result is a scalar.
|
|
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPVector> xsc = x->subn(c);
|
|
Ref<MLPPMatrix> mxsc;
|
|
mxsc.instance();
|
|
mxsc->row_add_mlpp_vector(xsc);
|
|
|
|
Ref<MLPPMatrix> result_mat = third_order_tensor(function, c)->tensor_vec_mult(xsc);
|
|
real_t result_scalar = mxsc->multn(result_mat->multn(mxsc->transposen()))->element_get(0, 0);
|
|
|
|
return quadratic_approximationv(function, c, x) + (1 / 6) * result_scalar;
|
|
}
|
|
|
|
real_t MLPPNumericalAnalysis::laplacian(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x) {
|
|
Ref<MLPPMatrix> hessian_matrix = hessian(function, x);
|
|
real_t laplacian = 0;
|
|
|
|
Size2i hessian_matrix_size = hessian_matrix->size();
|
|
|
|
for (int i = 0; i < hessian_matrix_size.y; i++) {
|
|
laplacian += hessian_matrix->element_get(i, i); // homogenous 2nd derivs w.r.t i, then i
|
|
}
|
|
|
|
return laplacian;
|
|
}
|
|
|
|
String MLPPNumericalAnalysis::second_partial_derivative_test(real_t (*function)(const Ref<MLPPVector> &), const Ref<MLPPVector> &x) {
|
|
MLPPLinAlg alg;
|
|
Ref<MLPPMatrix> hessian_matrix = hessian(function, x);
|
|
|
|
Size2i hessian_matrix_size = hessian_matrix->size();
|
|
|
|
// The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than
|
|
// 2, and the calculations specific to the bivariate case are less computationally intensive.
|
|
|
|
if (hessian_matrix_size.y == 2) {
|
|
real_t det = hessian_matrix->det();
|
|
real_t secondDerivative = num_diff_2v(function, x, 0, 0);
|
|
if (secondDerivative > 0 && det > 0) {
|
|
return "min";
|
|
} else if (secondDerivative < 0 && det > 0) {
|
|
return "max";
|
|
} else if (det < 0) {
|
|
return "saddle";
|
|
} else {
|
|
return "test was inconclusive";
|
|
}
|
|
} else {
|
|
if (alg.positive_definite_checker(hessian_matrix)) {
|
|
return "min";
|
|
} else if (alg.negative_definite_checker(hessian_matrix)) {
|
|
return "max";
|
|
} else if (!alg.zero_eigenvalue(hessian_matrix)) {
|
|
return "saddle";
|
|
} else {
|
|
return "test was inconclusive";
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPNumericalAnalysis::_bind_methods() {
|
|
}
|