pmlpp/lin_alg/mlpp_vector.cpp

1671 lines
38 KiB
C++

/*************************************************************************/
/* mlpp_vector.cpp */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2023-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "mlpp_vector.h"
#include "mlpp_matrix.h"
PoolRealArray MLPPVector::get_data() {
PoolRealArray pl;
if (size()) {
pl.resize(size());
PoolRealArray::Write w = pl.write();
real_t *dest = w.ptr();
for (int i = 0; i < size(); ++i) {
dest[i] = _data[i];
}
}
return pl;
}
void MLPPVector::set_data(const PoolRealArray &p_from) {
if (_size != p_from.size()) {
resize(p_from.size());
}
PoolRealArray::Read r = p_from.read();
for (int i = 0; i < _size; i++) {
_data[i] = r[i];
}
}
void MLPPVector::push_back(real_t p_elem) {
++_size;
_data = (real_t *)memrealloc(_data, _size * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
_data[_size - 1] = p_elem;
}
void MLPPVector::append_mlpp_vector(const Ref<MLPPVector> &p_other) {
ERR_FAIL_COND(!p_other.is_valid());
int other_size = p_other->size();
if (other_size == 0) {
return;
}
int start_offset = _size;
_size += other_size;
_data = (real_t *)memrealloc(_data, _size * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *other_ptr = p_other->ptr();
for (int i = 0; i < other_size; ++i) {
_data[start_offset + i] = other_ptr[i];
}
}
void MLPPVector::remove(int p_index) {
ERR_FAIL_INDEX(p_index, _size);
--_size;
if (_size == 0) {
memfree(_data);
_data = NULL;
return;
}
for (int i = p_index; i < _size; i++) {
_data[i] = _data[i + 1];
}
_data = (real_t *)memrealloc(_data, _size * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
// Removes the item copying the last value into the position of the one to
// remove. It's generally faster than `remove`.
void MLPPVector::remove_unordered(int p_index) {
ERR_FAIL_INDEX(p_index, _size);
_size--;
if (_size == 0) {
memfree(_data);
_data = NULL;
return;
}
if (_size > p_index) {
_data[p_index] = _data[_size];
}
_data = (real_t *)memrealloc(_data, _size * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void MLPPVector::erase(const real_t &p_val) {
int idx = find(p_val);
if (idx >= 0) {
remove(idx);
}
}
int MLPPVector::erase_multiple_unordered(const real_t &p_val) {
int from = 0;
int count = 0;
while (true) {
int64_t idx = find(p_val, from);
if (idx == -1) {
break;
}
remove_unordered(idx);
from = idx;
count++;
}
return count;
}
void MLPPVector::invert() {
for (int i = 0; i < _size / 2; i++) {
SWAP(_data[i], _data[_size - i - 1]);
}
}
void MLPPVector::resize(int p_size) {
_size = p_size;
if (_size == 0) {
memfree(_data);
_data = NULL;
return;
}
_data = (real_t *)memrealloc(_data, _size * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void MLPPVector::fill(real_t p_val) {
for (int i = 0; i < _size; i++) {
_data[i] = p_val;
}
}
void MLPPVector::insert(int p_pos, real_t p_val) {
ERR_FAIL_INDEX(p_pos, _size + 1);
if (p_pos == _size) {
push_back(p_val);
} else {
resize(_size + 1);
for (int i = _size - 1; i > p_pos; i--) {
_data[i] = _data[i - 1];
}
_data[p_pos] = p_val;
}
}
int MLPPVector::find(const real_t &p_val, int p_from) const {
for (int i = p_from; i < _size; i++) {
if (_data[i] == p_val) {
return i;
}
}
return -1;
}
void MLPPVector::ordered_insert(real_t p_val) {
int i;
for (i = 0; i < _size; i++) {
if (p_val < _data[i]) {
break;
}
}
insert(i, p_val);
}
Vector<real_t> MLPPVector::to_vector() const {
Vector<real_t> ret;
ret.resize(size());
real_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * _size);
return ret;
}
PoolRealArray MLPPVector::to_pool_vector() const {
PoolRealArray pl;
if (size()) {
pl.resize(size());
PoolRealArray::Write w = pl.write();
real_t *dest = w.ptr();
for (int i = 0; i < size(); ++i) {
dest[i] = static_cast<real_t>(_data[i]);
}
}
return pl;
}
Vector<uint8_t> MLPPVector::to_byte_array() const {
Vector<uint8_t> ret;
ret.resize(_size * sizeof(real_t));
uint8_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * _size);
return ret;
}
Ref<MLPPVector> MLPPVector::duplicate_fast() const {
Ref<MLPPVector> ret;
ret.instance();
ret->set_from_mlpp_vectorr(*this);
return ret;
}
void MLPPVector::set_from_mlpp_vectorr(const MLPPVector &p_from) {
if (_size != p_from.size()) {
resize(p_from.size());
}
for (int i = 0; i < p_from._size; i++) {
_data[i] = p_from._data[i];
}
}
void MLPPVector::set_from_mlpp_vector(const Ref<MLPPVector> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
if (_size != p_from->size()) {
resize(p_from->size());
}
for (int i = 0; i < p_from->_size; i++) {
_data[i] = p_from->_data[i];
}
}
void MLPPVector::set_from_vector(const Vector<real_t> &p_from) {
if (_size != p_from.size()) {
resize(p_from.size());
}
resize(p_from.size());
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
void MLPPVector::set_from_pool_vector(const PoolRealArray &p_from) {
if (_size != p_from.size()) {
resize(p_from.size());
}
PoolRealArray::Read r = p_from.read();
for (int i = 0; i < _size; i++) {
_data[i] = r[i];
}
}
bool MLPPVector::is_equal_approx(const Ref<MLPPVector> &p_with, real_t tolerance) const {
ERR_FAIL_COND_V(!p_with.is_valid(), false);
if (unlikely(this == p_with.ptr())) {
return true;
}
if (_size != p_with->size()) {
return false;
}
for (int i = 0; i < _size; ++i) {
if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) {
return false;
}
}
return true;
}
void MLPPVector::flatten_vectors(const Vector<Ref<MLPPVector>> &A) {
int vsize = 0;
for (int i = 0; i < A.size(); ++i) {
vsize += A[i]->size();
}
resize(vsize);
int a_index = 0;
real_t *a_ptr = ptrw();
for (int i = 0; i < A.size(); ++i) {
const Ref<MLPPVector> &r = A[i];
int r_size = r->size();
const real_t *r_ptr = r->ptr();
for (int j = 0; j < r_size; ++j) {
a_ptr[a_index] = r_ptr[j];
++a_index;
}
}
}
Ref<MLPPVector> MLPPVector::flatten_vectorsn(const Vector<Ref<MLPPVector>> &A) const {
Ref<MLPPVector> a;
a.instance();
int vsize = 0;
for (int i = 0; i < A.size(); ++i) {
vsize += A[i]->size();
}
a->resize(vsize);
int a_index = 0;
real_t *a_ptr = a->ptrw();
for (int i = 0; i < A.size(); ++i) {
const Ref<MLPPVector> &r = A[i];
int r_size = r->size();
const real_t *r_ptr = r->ptr();
for (int j = 0; j < r_size; ++j) {
a_ptr[a_index] = r_ptr[j];
++a_index;
}
}
return a;
}
void MLPPVector::hadamard_product(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] * b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::hadamard_productn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] * b_ptr[i];
}
return out;
}
void MLPPVector::hadamard_productb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] * b_ptr[i];
}
}
void MLPPVector::division_element_wise(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
Ref<MLPPVector> out;
out.instance();
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] / b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::division_element_wisen(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] / b_ptr[i];
}
return out;
}
void MLPPVector::division_element_wiseb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
resize(s);
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] / b_ptr[i];
}
}
void MLPPVector::scalar_multiply(real_t scalar) {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = out_ptr[i] * scalar;
}
}
Ref<MLPPVector> MLPPVector::scalar_multiplyn(real_t scalar) const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] * scalar;
}
return out;
}
void MLPPVector::scalar_multiplyb(real_t scalar, const Ref<MLPPVector> &a) {
int s = a->size();
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] * scalar;
}
}
void MLPPVector::scalar_add(real_t scalar) {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = out_ptr[i] + scalar;
}
}
Ref<MLPPVector> MLPPVector::scalar_addn(real_t scalar) const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] + scalar;
}
return out;
}
void MLPPVector::scalar_addb(real_t scalar, const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] + scalar;
}
}
void MLPPVector::add(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] += b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::addn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] + b_ptr[i];
}
return out;
}
void MLPPVector::addb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] + b_ptr[i];
}
}
void MLPPVector::sub(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] -= b_ptr[i];
}
}
Ref<MLPPVector> MLPPVector::subn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = a_ptr[i] - b_ptr[i];
}
return out;
}
void MLPPVector::subb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = a_ptr[i] - b_ptr[i];
}
}
void MLPPVector::log() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::logn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log(a_ptr[i]);
}
return out;
}
void MLPPVector::logb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::log(a_ptr[i]);
}
}
void MLPPVector::log10() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log10(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::log10n() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::log10(a_ptr[i]);
}
return out;
}
void MLPPVector::log10b(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::log10(a_ptr[i]);
}
}
void MLPPVector::exp() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::exp(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::expn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::exp(a_ptr[i]);
}
return out;
}
void MLPPVector::expb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::exp(a_ptr[i]);
}
}
void MLPPVector::erf() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::erf(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::erfn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::erf(a_ptr[i]);
}
return out;
}
void MLPPVector::erfb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::erf(a_ptr[i]);
}
}
void MLPPVector::exponentiate(real_t p) {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::pow(out_ptr[i], p);
}
}
Ref<MLPPVector> MLPPVector::exponentiaten(real_t p) const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
return out;
}
void MLPPVector::exponentiateb(const Ref<MLPPVector> &a, real_t p) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
}
void MLPPVector::sqrt() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sqrt(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::sqrtn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
return out;
}
void MLPPVector::sqrtb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
}
void MLPPVector::cbrt() {
return exponentiate(static_cast<real_t>(1) / static_cast<real_t>(3));
}
Ref<MLPPVector> MLPPVector::cbrtn() const {
return exponentiaten(static_cast<real_t>(1) / static_cast<real_t>(3));
}
void MLPPVector::cbrtb(const Ref<MLPPVector> &a) {
return exponentiateb(a, static_cast<real_t>(1) / static_cast<real_t>(3));
}
real_t MLPPVector::dot(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), 0);
ERR_FAIL_COND_V(_size != b->size(), 0);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t c = 0;
for (int i = 0; i < _size; ++i) {
c += a_ptr[i] * b_ptr[i];
}
return c;
}
Ref<MLPPVector> MLPPVector::cross(const Ref<MLPPVector> &b) {
// Cross products exist in R^7 also. Though, I will limit it to R^3 as Wolfram does this.
//std::vector<std::vector<real_t>> mat = { onevec(3), a, b };
real_t det1 = element_get(1) * b->element_get(2) - element_get(2) * b->element_get(1);
real_t det2 = -(element_get(0) * b->element_get(2) - element_get(2) * b->element_get(0));
real_t det3 = element_get(0) * b->element_get(1) - element_get(1) * b->element_get(0);
Ref<MLPPVector> ret;
ret.instance();
ret->resize(3);
ret->element_set(0, det1);
ret->element_set(1, det2);
ret->element_set(2, det3);
return ret;
}
void MLPPVector::abs() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = ABS(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::absn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
return out;
}
void MLPPVector::absb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::vecn_zero(int n) const {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(0);
return vec;
}
Ref<MLPPVector> MLPPVector::vecn_one(int n) const {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(1);
return vec;
}
Ref<MLPPVector> MLPPVector::vecn_full(int n, int k) const {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(k);
return vec;
}
Ref<MLPPVector> MLPPVector::create_vec_zero(int n) {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(0);
return vec;
}
Ref<MLPPVector> MLPPVector::create_vec_one(int n) {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(1);
return vec;
}
Ref<MLPPVector> MLPPVector::create_vec_full(int n, int k) {
Ref<MLPPVector> vec;
vec.instance();
vec->resize(n);
vec->fill(k);
return vec;
}
void MLPPVector::sin() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sin(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::sinn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sin(a_ptr[i]);
}
return out;
}
void MLPPVector::sinb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::sin(a_ptr[i]);
}
}
void MLPPVector::cos() {
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::sqrt(out_ptr[i]);
}
}
Ref<MLPPVector> MLPPVector::cosn() const {
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
out_ptr[i] = Math::cos(a_ptr[i]);
}
return out;
}
void MLPPVector::cosb(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int s = a->size();
resize(s);
const real_t *a_ptr = a->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
out_ptr[i] = Math::cos(a_ptr[i]);
}
}
void MLPPVector::max(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i > bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
}
Ref<MLPPVector> MLPPVector::maxn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i > bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
return out;
}
void MLPPVector::maxb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i > bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
}
void MLPPVector::min(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < _size; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i < bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
}
Ref<MLPPVector> MLPPVector::minn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPVector>());
ERR_FAIL_COND_V(_size != b->size(), Ref<MLPPVector>());
Ref<MLPPVector> out;
out.instance();
out->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < _size; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i < bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
return out;
}
void MLPPVector::minb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
int s = a->size();
ERR_FAIL_COND(s != b->size());
if (unlikely(size() != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < s; ++i) {
real_t aa_i = a_ptr[i];
real_t bb_i = b_ptr[i];
if (aa_i < bb_i) {
out_ptr[i] = aa_i;
} else {
out_ptr[i] = bb_i;
}
}
}
real_t MLPPVector::max_element() const {
const real_t *aa = ptr();
real_t max_element = -Math_INF;
for (int i = 0; i < _size; i++) {
real_t current_element = aa[i];
if (current_element > max_element) {
max_element = current_element;
}
}
return max_element;
}
int MLPPVector::max_element_index() const {
const real_t *aa = ptr();
real_t max_element = -Math_INF;
int index = -1;
for (int i = 0; i < _size; i++) {
real_t current_element = aa[i];
if (current_element > max_element) {
max_element = current_element;
index = i;
}
}
return index;
}
real_t MLPPVector::min_element() const {
const real_t *aa = ptr();
real_t min_element = Math_INF;
for (int i = 0; i < _size; i++) {
real_t current_element = aa[i];
if (current_element < min_element) {
min_element = current_element;
}
}
return min_element;
}
int MLPPVector::min_element_index() const {
const real_t *aa = ptr();
real_t min_element = Math_INF;
int index = -1;
for (int i = 0; i < _size; i++) {
real_t current_element = aa[i];
if (current_element < min_element) {
min_element = current_element;
index = i;
}
}
return index;
}
/*
std::vector<std::vector<real_t>> MLPPVector::round(std::vector<std::vector<real_t>> A) {
std::vector<std::vector<real_t>> B;
B.resize(A.size());
for (uint32_t i = 0; i < B.size(); i++) {
B[i].resize(A[0].size());
}
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
B[i][j] = Math::round(A[i][j]);
}
}
return B;
}
*/
real_t MLPPVector::euclidean_distance(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), 0);
ERR_FAIL_COND_V(_size != b->size(), 0);
const real_t *aa = ptr();
const real_t *ba = b->ptr();
real_t dist = 0;
for (int i = 0; i < _size; i++) {
dist += (aa[i] - ba[i]) * (aa[i] - ba[i]);
}
return Math::sqrt(dist);
}
real_t MLPPVector::euclidean_distance_squared(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), 0);
ERR_FAIL_COND_V(_size != b->size(), 0);
const real_t *aa = ptr();
const real_t *ba = b->ptr();
real_t dist = 0;
for (int i = 0; i < _size; i++) {
dist += (aa[i] - ba[i]) * (aa[i] - ba[i]);
}
return dist;
}
real_t MLPPVector::norm_2() const {
const real_t *a_ptr = ptr();
real_t n_sq = 0;
for (int i = 0; i < _size; ++i) {
n_sq += a_ptr[i] * a_ptr[i];
}
return Math::sqrt(n_sq);
}
real_t MLPPVector::norm_sq() const {
const real_t *a_ptr = ptr();
real_t n_sq = 0;
for (int i = 0; i < _size; ++i) {
n_sq += a_ptr[i] * a_ptr[i];
}
return n_sq;
}
real_t MLPPVector::sum_elements() const {
const real_t *a_ptr = ptr();
real_t sum = 0;
for (int i = 0; i < _size; ++i) {
sum += a_ptr[i];
}
return sum;
}
/*
real_t MLPPVector::cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b) {
return dot(a, b) / (norm_2(a) * norm_2(b));
}
*/
void MLPPVector::subtract_matrix_rows(const Ref<MLPPMatrix> &B) {
Size2i b_size = B->size();
ERR_FAIL_COND(b_size.x != size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
}
Ref<MLPPVector> MLPPVector::subtract_matrix_rowsn(const Ref<MLPPMatrix> &B) const {
Ref<MLPPVector> c = duplicate_fast();
Size2i b_size = B->size();
ERR_FAIL_COND_V(b_size.x != c->size(), c);
const real_t *b_ptr = B->ptr();
real_t *c_ptr = c->ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
return c;
}
void MLPPVector::subtract_matrix_rowsb(const Ref<MLPPVector> &a, const Ref<MLPPMatrix> &B) {
Size2i b_size = B->size();
ERR_FAIL_COND(b_size.x != a->size());
set_from_mlpp_vector(a);
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
}
Ref<MLPPMatrix> MLPPVector::outer_product(const Ref<MLPPVector> &b) const {
Ref<MLPPMatrix> C;
C.instance();
Size2i sm = Size2i(b->size(), size());
C->resize(sm);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
for (int i = 0; i < sm.y; ++i) {
real_t curr_a = a_ptr[i];
for (int j = 0; j < sm.x; ++j) {
C->element_set(i, j, curr_a * b_ptr[j]);
}
}
return C;
}
Ref<MLPPMatrix> MLPPVector::diagnm() const {
Ref<MLPPMatrix> B;
B.instance();
B->resize(Size2i(_size, _size));
B->fill(0);
const real_t *a_ptr = ptr();
real_t *b_ptr = B->ptrw();
for (int i = 0; i < _size; ++i) {
b_ptr[B->calculate_index(i, i)] = a_ptr[i];
}
return B;
}
String MLPPVector::to_string() {
String str;
str += "[MLPPVector: ";
for (int x = 0; x < _size; ++x) {
str += String::num(_data[x]);
str += " ";
}
str += "]";
return str;
}
MLPPVector::MLPPVector() {
_size = 0;
_data = NULL;
}
MLPPVector::MLPPVector(const MLPPVector &p_from) {
_size = 0;
_data = NULL;
resize(p_from.size());
for (int i = 0; i < p_from._size; i++) {
_data[i] = p_from._data[i];
}
}
MLPPVector::MLPPVector(const Vector<real_t> &p_from) {
_size = 0;
_data = NULL;
resize(p_from.size());
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
MLPPVector::MLPPVector(const PoolRealArray &p_from) {
_size = 0;
_data = NULL;
resize(p_from.size());
PoolRealArray::Read r = p_from.read();
for (int i = 0; i < _size; i++) {
_data[i] = r[i];
}
}
MLPPVector::MLPPVector(const real_t *p_from, const int p_size) {
_size = 0;
_data = NULL;
resize(p_size);
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
MLPPVector::~MLPPVector() {
if (_data) {
reset();
}
}
std::vector<real_t> MLPPVector::to_std_vector() const {
std::vector<real_t> ret;
ret.resize(size());
real_t *w = &ret[0];
memcpy(w, _data, sizeof(real_t) * _size);
return ret;
}
void MLPPVector::set_from_std_vector(const std::vector<real_t> &p_from) {
resize(p_from.size());
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
MLPPVector::MLPPVector(const std::vector<real_t> &p_from) {
_size = 0;
_data = NULL;
resize(p_from.size());
for (int i = 0; i < _size; i++) {
_data[i] = p_from[i];
}
}
void MLPPVector::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_data"), &MLPPVector::get_data);
ClassDB::bind_method(D_METHOD("set_data", "data"), &MLPPVector::set_data);
ADD_PROPERTY(PropertyInfo(Variant::POOL_REAL_ARRAY, "data"), "set_data", "get_data");
ClassDB::bind_method(D_METHOD("push_back", "elem"), &MLPPVector::push_back);
ClassDB::bind_method(D_METHOD("append_mlpp_vector", "other"), &MLPPVector::append_mlpp_vector);
ClassDB::bind_method(D_METHOD("remove", "index"), &MLPPVector::remove);
ClassDB::bind_method(D_METHOD("remove_unordered", "index"), &MLPPVector::remove_unordered);
ClassDB::bind_method(D_METHOD("erase", "val"), &MLPPVector::erase);
ClassDB::bind_method(D_METHOD("erase_multiple_unordered", "val"), &MLPPVector::erase_multiple_unordered);
ClassDB::bind_method(D_METHOD("invert"), &MLPPVector::invert);
ClassDB::bind_method(D_METHOD("clear"), &MLPPVector::clear);
ClassDB::bind_method(D_METHOD("reset"), &MLPPVector::reset);
ClassDB::bind_method(D_METHOD("empty"), &MLPPVector::empty);
ClassDB::bind_method(D_METHOD("size"), &MLPPVector::size);
ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPVector::resize);
ClassDB::bind_method(D_METHOD("element_get", "index"), &MLPPVector::element_get);
ClassDB::bind_method(D_METHOD("element_set", "index", "val"), &MLPPVector::element_set);
ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPVector::fill);
ClassDB::bind_method(D_METHOD("insert", "pos", "val"), &MLPPVector::insert);
ClassDB::bind_method(D_METHOD("find", "val", "from"), &MLPPVector::find, 0);
ClassDB::bind_method(D_METHOD("sort"), &MLPPVector::sort);
ClassDB::bind_method(D_METHOD("ordered_insert", "val"), &MLPPVector::ordered_insert);
ClassDB::bind_method(D_METHOD("to_pool_vector"), &MLPPVector::to_pool_vector);
ClassDB::bind_method(D_METHOD("to_byte_array"), &MLPPVector::to_byte_array);
ClassDB::bind_method(D_METHOD("duplicate_fast"), &MLPPVector::duplicate_fast);
ClassDB::bind_method(D_METHOD("set_from_mlpp_vector", "from"), &MLPPVector::set_from_mlpp_vector);
ClassDB::bind_method(D_METHOD("set_from_pool_vector", "from"), &MLPPVector::set_from_pool_vector);
ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPVector::is_equal_approx, CMP_EPSILON);
ClassDB::bind_method(D_METHOD("hadamard_product", "b"), &MLPPVector::hadamard_product);
ClassDB::bind_method(D_METHOD("hadamard_productn", "b"), &MLPPVector::hadamard_productn);
ClassDB::bind_method(D_METHOD("hadamard_productb", "a", "b"), &MLPPVector::hadamard_productb);
ClassDB::bind_method(D_METHOD("division_element_wise", "b"), &MLPPVector::division_element_wise);
ClassDB::bind_method(D_METHOD("division_element_wisen", "b"), &MLPPVector::division_element_wisen);
ClassDB::bind_method(D_METHOD("division_element_wiseb", "a", "b"), &MLPPVector::division_element_wiseb);
ClassDB::bind_method(D_METHOD("scalar_multiply", "scalar"), &MLPPVector::scalar_multiply);
ClassDB::bind_method(D_METHOD("scalar_multiplyn", "scalar"), &MLPPVector::scalar_multiplyn);
ClassDB::bind_method(D_METHOD("scalar_multiplyb", "scalar", "a"), &MLPPVector::scalar_multiplyb);
ClassDB::bind_method(D_METHOD("scalar_add", "scalar"), &MLPPVector::scalar_add);
ClassDB::bind_method(D_METHOD("scalar_addn", "scalar"), &MLPPVector::scalar_addn);
ClassDB::bind_method(D_METHOD("scalar_addb", "scalar", "a"), &MLPPVector::scalar_addb);
ClassDB::bind_method(D_METHOD("add", "b"), &MLPPVector::add);
ClassDB::bind_method(D_METHOD("addn", "b"), &MLPPVector::addn);
ClassDB::bind_method(D_METHOD("addb", "a", "b"), &MLPPVector::addb);
ClassDB::bind_method(D_METHOD("sub", "b"), &MLPPVector::sub);
ClassDB::bind_method(D_METHOD("subn", "b"), &MLPPVector::subn);
ClassDB::bind_method(D_METHOD("subb", "a", "b"), &MLPPVector::subb);
ClassDB::bind_method(D_METHOD("log"), &MLPPVector::log);
ClassDB::bind_method(D_METHOD("logn"), &MLPPVector::logn);
ClassDB::bind_method(D_METHOD("logb", "a"), &MLPPVector::logb);
ClassDB::bind_method(D_METHOD("log10"), &MLPPVector::log10);
ClassDB::bind_method(D_METHOD("log10n"), &MLPPVector::log10n);
ClassDB::bind_method(D_METHOD("log10b", "a"), &MLPPVector::log10b);
ClassDB::bind_method(D_METHOD("exp"), &MLPPVector::exp);
ClassDB::bind_method(D_METHOD("expn"), &MLPPVector::expn);
ClassDB::bind_method(D_METHOD("expb", "a"), &MLPPVector::expb);
ClassDB::bind_method(D_METHOD("erf"), &MLPPVector::erf);
ClassDB::bind_method(D_METHOD("erfn"), &MLPPVector::erfn);
ClassDB::bind_method(D_METHOD("erfb", "a"), &MLPPVector::erfb);
ClassDB::bind_method(D_METHOD("exponentiate", "p"), &MLPPVector::exponentiate);
ClassDB::bind_method(D_METHOD("exponentiaten", "p"), &MLPPVector::exponentiaten);
ClassDB::bind_method(D_METHOD("exponentiateb", "a", "p"), &MLPPVector::exponentiateb);
ClassDB::bind_method(D_METHOD("sqrt"), &MLPPVector::sqrt);
ClassDB::bind_method(D_METHOD("sqrtn"), &MLPPVector::sqrtn);
ClassDB::bind_method(D_METHOD("sqrtb", "a"), &MLPPVector::sqrtb);
ClassDB::bind_method(D_METHOD("cbrt"), &MLPPVector::cbrt);
ClassDB::bind_method(D_METHOD("cbrtn"), &MLPPVector::cbrtn);
ClassDB::bind_method(D_METHOD("cbrtb", "a"), &MLPPVector::cbrtb);
ClassDB::bind_method(D_METHOD("dot", "b"), &MLPPVector::dot);
ClassDB::bind_method(D_METHOD("abs"), &MLPPVector::abs);
ClassDB::bind_method(D_METHOD("absn"), &MLPPVector::absn);
ClassDB::bind_method(D_METHOD("absb", "a"), &MLPPVector::absb);
ClassDB::bind_method(D_METHOD("vecn_zero", "n"), &MLPPVector::vecn_zero);
ClassDB::bind_method(D_METHOD("vecn_one", "n"), &MLPPVector::vecn_one);
ClassDB::bind_method(D_METHOD("vecn_full", "n", "k"), &MLPPVector::vecn_full);
ClassDB::bind_method(D_METHOD("sin"), &MLPPVector::sin);
ClassDB::bind_method(D_METHOD("sinn"), &MLPPVector::sinn);
ClassDB::bind_method(D_METHOD("sinb", "a"), &MLPPVector::sinb);
ClassDB::bind_method(D_METHOD("cos"), &MLPPVector::cos);
ClassDB::bind_method(D_METHOD("cosn"), &MLPPVector::cosn);
ClassDB::bind_method(D_METHOD("cosb", "a"), &MLPPVector::cosb);
ClassDB::bind_method(D_METHOD("max", "b"), &MLPPVector::max);
ClassDB::bind_method(D_METHOD("maxn", "b"), &MLPPVector::maxn);
ClassDB::bind_method(D_METHOD("maxb", "a", "b"), &MLPPVector::maxb);
ClassDB::bind_method(D_METHOD("min", "b"), &MLPPVector::min);
ClassDB::bind_method(D_METHOD("minn", "b"), &MLPPVector::minn);
ClassDB::bind_method(D_METHOD("minb", "a", "b"), &MLPPVector::minb);
ClassDB::bind_method(D_METHOD("max_element"), &MLPPVector::max_element);
ClassDB::bind_method(D_METHOD("max_element_index"), &MLPPVector::max_element_index);
ClassDB::bind_method(D_METHOD("min_element"), &MLPPVector::min_element);
ClassDB::bind_method(D_METHOD("min_element_index"), &MLPPVector::min_element_index);
ClassDB::bind_method(D_METHOD("euclidean_distance", "b"), &MLPPVector::euclidean_distance);
ClassDB::bind_method(D_METHOD("euclidean_distance_squared", "b"), &MLPPVector::euclidean_distance_squared);
ClassDB::bind_method(D_METHOD("norm_sq"), &MLPPVector::norm_sq);
ClassDB::bind_method(D_METHOD("sum_elements"), &MLPPVector::sum_elements);
ClassDB::bind_method(D_METHOD("subtract_matrix_rows", "B"), &MLPPVector::subtract_matrix_rows);
ClassDB::bind_method(D_METHOD("subtract_matrix_rowsn", "B"), &MLPPVector::subtract_matrix_rowsn);
ClassDB::bind_method(D_METHOD("subtract_matrix_rowsb", "a", "B"), &MLPPVector::subtract_matrix_rowsb);
ClassDB::bind_method(D_METHOD("outer_product", "b"), &MLPPVector::outer_product);
ClassDB::bind_method(D_METHOD("diagnm"), &MLPPVector::diagnm);
}