pmlpp/gaussian_nb/gaussian_nb.cpp

244 lines
7.5 KiB
C++

/*************************************************************************/
/* gaussian_nb.cpp */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2023-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "gaussian_nb.h"
#ifdef USING_SFW
#include "sfw.h"
#else
#include "core/math/math_defs.h"
#endif
#include "../stat/stat.h"
#include "../utilities/utilities.h"
/*
Ref<MLPPMatrix> MLPPGaussianNB::get_input_set() {
return _input_set;
}
void MLPPGaussianNB::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
}
Ref<MLPPVector> MLPPGaussianNB::get_output_set() {
return _output_set;
}
void MLPPGaussianNB::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
}
int MLPPGaussianNB::get_class_num() {
return _class_num;
}
void MLPPGaussianNB::set_class_num(const int val) {
_class_num = val;
}
*/
Ref<MLPPVector> MLPPGaussianNB::model_set_test(const Ref<MLPPMatrix> &X) {
Ref<MLPPVector> y_hat;
y_hat.instance();
y_hat->resize(X->size().y);
Ref<MLPPVector> x_row_tmp;
x_row_tmp.instance();
x_row_tmp->resize(X->size().x);
for (int i = 0; i < X->size().y; i++) {
X->row_get_into_mlpp_vector(i, x_row_tmp);
y_hat->element_set(i, model_test(x_row_tmp));
}
return y_hat;
}
real_t MLPPGaussianNB::model_test(const Ref<MLPPVector> &x) {
LocalVector<real_t> score;
score.resize(_class_num);
real_t y_hat_i = 1;
for (int i = _class_num - 1; i >= 0; i--) {
real_t sigma_i = _sigma->element_get(i);
real_t x_i = x->element_get(i);
real_t mu_i = _mu->element_get(i);
y_hat_i += Math::log(_priors->element_get(i) * (1 / Math::sqrt(2 * Math_PI * sigma_i * sigma_i)) * Math::exp(-(x_i * mu_i) * (x_i * mu_i) / (2 * sigma_i * sigma_i)));
score[i] = Math::exp(y_hat_i);
}
real_t max_element = -Math_INF;
int max_element_index = 0;
for (int i = 0; i < _class_num; ++i) {
real_t score_i = score[i];
if (score_i > max_element) {
max_element = score_i;
max_element_index = i;
}
}
return max_element_index;
}
real_t MLPPGaussianNB::score() {
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
}
bool MLPPGaussianNB::is_initialized() {
return _initialized;
}
void MLPPGaussianNB::initialize() {
if (_initialized) {
return;
}
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
_initialized = true;
}
MLPPGaussianNB::MLPPGaussianNB(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_class_num) {
_input_set = p_input_set;
_output_set = p_output_set;
_class_num = p_class_num;
_mu.instance();
_sigma.instance();
_priors.instance();
_y_hat.instance();
_y_hat->resize(_output_set->size());
evaluate();
_initialized = true;
}
MLPPGaussianNB::MLPPGaussianNB() {
_initialized = false;
}
MLPPGaussianNB::~MLPPGaussianNB() {
}
void MLPPGaussianNB::evaluate() {
MLPPStat stat;
// Computing mu_k_y and sigma_k_y
_mu->resize(_class_num);
_sigma->resize(_class_num);
Ref<MLPPVector> set_vec;
set_vec.instance();
for (int i = _class_num - 1; i >= 0; i--) {
PoolRealArray set;
for (int j = 0; j < _input_set->size().y; j++) {
for (int k = 0; k < _input_set->size().x; k++) {
if (_output_set->element_get(j) == i) {
set.push_back(_input_set->element_get(j, k));
}
}
}
set_vec->set_from_pool_vector(set);
_mu->element_set(i, stat.meanv(set_vec));
_sigma->element_set(i, stat.standard_deviationv(set_vec));
}
// Priors
_priors->resize(_class_num);
_priors->fill(0);
for (int i = 0; i < _output_set->size(); i++) {
int indx = static_cast<int>(_output_set->element_get(i));
_priors->element_set(indx, _priors->element_get(indx));
}
_priors->scalar_multiply(real_t(1) / real_t(_output_set->size()));
for (int i = 0; i < _output_set->size(); i++) {
LocalVector<real_t> score;
score.resize(_class_num);
real_t y_hat_i = 1;
for (int j = _class_num - 1; j >= 0; j--) {
for (int k = 0; k < _input_set->size().x; k++) {
real_t sigma_j = _sigma->element_get(j);
real_t mu_j = _mu->element_get(j);
real_t input_set_i_k = _input_set->element_get(i, k);
y_hat_i += Math::log(_priors->element_get(j) * (1 / Math::sqrt(2 * Math_PI * sigma_j * sigma_j)) * Math::exp(-(input_set_i_k * mu_j) * (input_set_i_k * mu_j) / (2 * sigma_j * sigma_j)));
}
score[j] = Math::exp(y_hat_i);
}
real_t max_element = -Math_INF;
int max_element_index = 0;
for (int ii = 0; ii < _class_num; ++ii) {
real_t score_ii = score[ii];
if (score_ii > max_element) {
max_element = score_ii;
max_element_index = ii;
}
}
_y_hat->element_set(i, max_element_index);
}
}
void MLPPGaussianNB::_bind_methods() {
/*
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGaussianNB::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGaussianNB::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGaussianNB::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGaussianNB::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_k"), &MLPPGaussianNB::get_k);
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGaussianNB::set_k);
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGaussianNB::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGaussianNB::model_test);
ClassDB::bind_method(D_METHOD("score"), &MLPPGaussianNB::score);
*/
}