mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-08 13:12:09 +01:00
582 lines
18 KiB
C++
582 lines
18 KiB
C++
/*************************************************************************/
|
|
/* convolutions.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "convolutions.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../stat/stat.h"
|
|
|
|
#ifdef USING_SFW
|
|
#include "sfw.h"
|
|
#else
|
|
#include "core/math/math_funcs.h"
|
|
#endif
|
|
|
|
#include <cmath>
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::convolve_2d(const Ref<MLPPMatrix> &p_input, const Ref<MLPPMatrix> &filter, const int S, const int P) {
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPMatrix> input = p_input;
|
|
|
|
Size2i input_size = input->size();
|
|
int N = input_size.y;
|
|
int F = filter->size().y;
|
|
int map_size = (N - F + 2 * P) / S + 1; // This is computed as ⌊map_size⌋ by def- thanks C++!
|
|
|
|
if (P != 0) {
|
|
Ref<MLPPMatrix> padded_input;
|
|
padded_input.instance();
|
|
|
|
Size2i pis = Size2i(N + 2 * P, N + 2 * P);
|
|
|
|
padded_input->resize(pis);
|
|
|
|
for (int i = 0; i < pis.y; i++) {
|
|
for (int j = 0; j < pis.x; j++) {
|
|
if (i - P < 0 || j - P < 0 || i - P > input_size.y - 1 || j - P > input_size.x - 1) {
|
|
padded_input->element_set(i, j, 0);
|
|
} else {
|
|
padded_input->element_set(i, j, input->element_get(i - P, j - P));
|
|
}
|
|
}
|
|
}
|
|
|
|
input = padded_input;
|
|
}
|
|
|
|
Ref<MLPPMatrix> feature_map;
|
|
feature_map.instance();
|
|
|
|
feature_map->resize(Size2i(map_size, map_size));
|
|
|
|
Ref<MLPPVector> filter_flattened = filter->flatten();
|
|
|
|
Ref<MLPPVector> convolving_input;
|
|
convolving_input.instance();
|
|
convolving_input->resize(F * F);
|
|
|
|
for (int i = 0; i < map_size; i++) {
|
|
for (int j = 0; j < map_size; j++) {
|
|
int current_index = 0;
|
|
|
|
for (int k = 0; k < F; k++) {
|
|
for (int p = 0; p < F; p++) {
|
|
real_t val;
|
|
|
|
if (i == 0 && j == 0) {
|
|
val = input->element_get(i + k, j + p);
|
|
} else if (i == 0) {
|
|
val = input->element_get(i + k, j + (S - 1) + p);
|
|
} else if (j == 0) {
|
|
val = input->element_get(i + (S - 1) + k, j + p);
|
|
} else {
|
|
val = input->element_get(i + (S - 1) + k, j + (S - 1) + p);
|
|
}
|
|
|
|
convolving_input->element_set(current_index, val);
|
|
++current_index;
|
|
}
|
|
}
|
|
|
|
feature_map->element_set(i, j, convolving_input->dot(filter_flattened));
|
|
}
|
|
}
|
|
|
|
return feature_map;
|
|
}
|
|
|
|
Ref<MLPPTensor3> MLPPConvolutions::convolve_3d(const Ref<MLPPTensor3> &p_input, const Ref<MLPPTensor3> &filter, const int S, const int P) {
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPTensor3> input = p_input;
|
|
|
|
Size3i input_size = input->size();
|
|
Size3i filter_size = filter->size();
|
|
|
|
int N = input_size.y;
|
|
int F = filter_size.y;
|
|
int C = filter_size.z / input_size.z;
|
|
int map_size = (N - F + 2 * P) / S + 1; // This is computed as ⌊map_size⌋ by def.
|
|
|
|
if (P != 0) {
|
|
Ref<MLPPTensor3> padded_input;
|
|
padded_input.instance();
|
|
|
|
Ref<MLPPMatrix> padded_input_slice;
|
|
padded_input_slice.instance();
|
|
|
|
Size2i padded_input_slice_size = Size2i(N + 2 * P, N + 2 * P);
|
|
padded_input_slice->resize(padded_input_slice_size);
|
|
|
|
padded_input->resize(Size3i(padded_input_slice_size.x, padded_input_slice_size.y, input_size.z));
|
|
|
|
for (int c = 0; c < input_size.z; c++) {
|
|
for (int i = 0; i < padded_input_slice_size.y; i++) {
|
|
for (int j = 0; j < padded_input_slice_size.x; j++) {
|
|
if (i - P < 0 || j - P < 0 || i - P > input_size.y - 1 || j - P > input_size.x - 1) {
|
|
padded_input_slice->element_set(i, j, 0);
|
|
} else {
|
|
padded_input_slice->element_set(i, j, input->element_get(i - P, j - P, c));
|
|
}
|
|
}
|
|
}
|
|
|
|
padded_input->z_slice_set_mlpp_matrix(c, padded_input_slice);
|
|
}
|
|
|
|
input = padded_input;
|
|
}
|
|
|
|
Ref<MLPPTensor3> feature_map;
|
|
feature_map.instance();
|
|
feature_map->resize(Size3i(map_size, map_size, C));
|
|
|
|
Ref<MLPPVector> filter_flattened = filter->flatten();
|
|
|
|
Ref<MLPPVector> convolving_input;
|
|
convolving_input.instance();
|
|
convolving_input->resize(input_size.z * F * F);
|
|
|
|
for (int c = 0; c < C; c++) {
|
|
for (int i = 0; i < map_size; i++) {
|
|
for (int j = 0; j < map_size; j++) {
|
|
int current_index = 0;
|
|
|
|
for (int t = 0; t < input_size.z; t++) {
|
|
for (int k = 0; k < F; k++) {
|
|
for (int p = 0; p < F; p++) {
|
|
real_t val;
|
|
|
|
if (i == 0 && j == 0) {
|
|
val = input->element_get(i + k, j + p, t);
|
|
} else if (i == 0) {
|
|
val = input->element_get(i + k, j + (S - 1) + p, t);
|
|
} else if (j == 0) {
|
|
val = input->element_get(i + (S - 1) + k, j + p, t);
|
|
} else {
|
|
val = input->element_get(i + (S - 1) + k, j + (S - 1) + p, t);
|
|
}
|
|
|
|
convolving_input->element_set(current_index, val);
|
|
++current_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
feature_map->element_set(c, i, j, convolving_input->dot(filter_flattened));
|
|
}
|
|
}
|
|
}
|
|
return feature_map;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::pool_2d(const Ref<MLPPMatrix> &input, const int F, const int S, const PoolType type) {
|
|
MLPPLinAlg alg;
|
|
|
|
Size2i input_size = input->size();
|
|
|
|
int N = input_size.y;
|
|
int map_size = (N - F) / S + 1;
|
|
|
|
Ref<MLPPMatrix> pooled_map;
|
|
pooled_map.instance();
|
|
pooled_map->resize(Size2i(map_size, map_size));
|
|
|
|
Ref<MLPPVector> pooling_input;
|
|
pooling_input.instance();
|
|
pooling_input->resize(F * F);
|
|
|
|
for (int i = 0; i < map_size; i++) {
|
|
for (int j = 0; j < map_size; j++) {
|
|
int current_index = 0;
|
|
|
|
for (int k = 0; k < F; k++) {
|
|
for (int p = 0; p < F; p++) {
|
|
real_t val;
|
|
|
|
if (i == 0 && j == 0) {
|
|
val = input->element_get(i + k, j + p);
|
|
} else if (i == 0) {
|
|
val = input->element_get(i + k, j + (S - 1) + p);
|
|
} else if (j == 0) {
|
|
val = input->element_get(i + (S - 1) + k, j + p);
|
|
} else {
|
|
val = input->element_get(i + (S - 1) + k, j + (S - 1) + p);
|
|
}
|
|
|
|
pooling_input->element_set(current_index, val);
|
|
++current_index;
|
|
}
|
|
}
|
|
|
|
if (type == POOL_TYPE_AVERAGE) {
|
|
MLPPStat stat;
|
|
pooled_map->element_set(i, j, stat.meanv(pooling_input));
|
|
} else if (type == POOL_TYPE_MIN) {
|
|
pooled_map->element_set(i, j, alg.minvr(pooling_input));
|
|
} else {
|
|
pooled_map->element_set(i, j, alg.maxvr(pooling_input));
|
|
}
|
|
}
|
|
}
|
|
|
|
return pooled_map;
|
|
}
|
|
|
|
Ref<MLPPTensor3> MLPPConvolutions::pool_3d(const Ref<MLPPTensor3> &input, const int F, const int S, const PoolType type) {
|
|
Size3i input_size = input->size();
|
|
|
|
Ref<MLPPMatrix> z_slice;
|
|
z_slice.instance();
|
|
z_slice->resize(Size2i(input_size.x, input_size.y));
|
|
|
|
int N = input_size.y;
|
|
int map_size = (N - F) / S + 1;
|
|
|
|
Ref<MLPPTensor3> pooled_map;
|
|
pooled_map.instance();
|
|
pooled_map->resize(Size3i(map_size, map_size, input_size.z));
|
|
|
|
for (int i = 0; i < input_size.z; i++) {
|
|
input->z_slice_get_into_mlpp_matrix(i, z_slice);
|
|
|
|
Ref<MLPPMatrix> p = pool_2d(z_slice, F, S, type);
|
|
|
|
pooled_map->z_slice_set_mlpp_matrix(i, p);
|
|
}
|
|
|
|
return pooled_map;
|
|
}
|
|
|
|
real_t MLPPConvolutions::global_pool_2d(const Ref<MLPPMatrix> &input, const PoolType type) {
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPVector> f = input->flatten();
|
|
|
|
if (type == POOL_TYPE_AVERAGE) {
|
|
MLPPStat stat;
|
|
return stat.meanv(f);
|
|
} else if (type == POOL_TYPE_MIN) {
|
|
return alg.minvr(f);
|
|
} else {
|
|
return alg.maxvr(f);
|
|
}
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPConvolutions::global_pool_3d(const Ref<MLPPTensor3> &input, const PoolType type) {
|
|
Size3i input_size = input->size();
|
|
|
|
Ref<MLPPVector> pooled_map;
|
|
pooled_map.instance();
|
|
pooled_map->resize(input_size.z);
|
|
|
|
Ref<MLPPMatrix> z_slice;
|
|
z_slice.instance();
|
|
z_slice->resize(Size2i(input_size.x, input_size.y));
|
|
|
|
for (int i = 0; i < input_size.z; i++) {
|
|
input->z_slice_get_into_mlpp_matrix(i, z_slice);
|
|
|
|
pooled_map->element_set(i, global_pool_2d(z_slice, type));
|
|
}
|
|
|
|
return pooled_map;
|
|
}
|
|
|
|
real_t MLPPConvolutions::gaussian_2d(const real_t x, const real_t y, const real_t std) {
|
|
real_t std_sq = std * std;
|
|
return 1 / (2 * Math_PI * std_sq) * Math::exp(-(x * x + y * y) / 2 * std_sq);
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::gaussian_filter_2d(const int size, const real_t std) {
|
|
Ref<MLPPMatrix> filter;
|
|
filter.instance();
|
|
filter->resize(Size2i(size, size));
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
for (int j = 0; j < size; j++) {
|
|
real_t val = gaussian_2d(i - (size - 1) / 2, (size - 1) / 2 - j, std);
|
|
|
|
filter->element_set(i, j, val);
|
|
}
|
|
}
|
|
|
|
return filter;
|
|
}
|
|
|
|
// Indeed a filter could have been used for this purpose, but I decided that it would've just
|
|
// been easier to carry out the calculation explicitly, mainly because it is more informative,
|
|
// and also because my convolution algorithm is only built for filters with equally sized
|
|
// heights and widths.
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::dx(const Ref<MLPPMatrix> &input) {
|
|
Size2i input_size = input->size();
|
|
|
|
Ref<MLPPMatrix> deriv; // We assume a gray scale image.
|
|
deriv.instance();
|
|
deriv->resize(input_size);
|
|
|
|
for (int i = 0; i < input_size.y; i++) {
|
|
for (int j = 0; j < input_size.x; j++) {
|
|
if (j != 0 && j != input_size.y - 1) {
|
|
deriv->element_set(i, j, input->element_get(i, j + 1) - input->element_get(i, j - 1));
|
|
} else if (j == 0) {
|
|
deriv->element_set(i, j, input->element_get(i, j + 1)); // E0 - 0 = Implicit zero-padding
|
|
} else {
|
|
deriv->element_set(i, j, -input->element_get(i, j - 1)); // 0 - E1 = Implicit zero-padding
|
|
}
|
|
}
|
|
}
|
|
|
|
return deriv;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::dy(const Ref<MLPPMatrix> &input) {
|
|
Size2i input_size = input->size();
|
|
|
|
Ref<MLPPMatrix> deriv; // We assume a gray scale image.
|
|
deriv.instance();
|
|
deriv->resize(input_size);
|
|
|
|
for (int i = 0; i < input_size.y; i++) {
|
|
for (int j = 0; j < input_size.x; j++) {
|
|
if (i != 0 && i != input_size.y - 1) {
|
|
deriv->element_set(i, j, input->element_get(i - 1, j) - input->element_get(i + 1, j));
|
|
} else if (i == 0) {
|
|
deriv->element_set(i, j, -input->element_get(i + 1, j)); // 0 - E1 = Implicit zero-padding
|
|
} else {
|
|
deriv->element_set(i, j, input->element_get(i - 1, j)); // E0 - 0 =Implicit zero-padding
|
|
}
|
|
}
|
|
}
|
|
|
|
return deriv;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::grad_magnitude(const Ref<MLPPMatrix> &input) {
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPMatrix> x_deriv_2 = dx(input)->hadamard_productn(dx(input));
|
|
Ref<MLPPMatrix> y_deriv_2 = dy(input)->hadamard_productn(dy(input));
|
|
|
|
return x_deriv_2->addn(y_deriv_2)->sqrtn();
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::grad_orientation(const Ref<MLPPMatrix> &input) {
|
|
Ref<MLPPMatrix> deriv; // We assume a gray scale image.
|
|
deriv.instance();
|
|
deriv->resize(input->size());
|
|
|
|
Size2i deriv_size = deriv->size();
|
|
|
|
Ref<MLPPMatrix> x_deriv = dx(input);
|
|
Ref<MLPPMatrix> y_deriv = dy(input);
|
|
|
|
for (int i = 0; i < deriv_size.y; i++) {
|
|
for (int j = 0; j < deriv_size.x; j++) {
|
|
deriv->element_set(i, j, Math::atan2(y_deriv->element_get(i, j), x_deriv->element_get(i, j)));
|
|
}
|
|
}
|
|
|
|
return deriv;
|
|
}
|
|
|
|
Ref<MLPPTensor3> MLPPConvolutions::compute_m(const Ref<MLPPMatrix> &input) {
|
|
Size2i input_size = input->size();
|
|
|
|
real_t const SIGMA = 1;
|
|
real_t const GAUSSIAN_SIZE = 3;
|
|
|
|
real_t const GAUSSIAN_PADDING = ((input_size.y - 1) + GAUSSIAN_SIZE - input_size.y) / 2; // Convs must be same.
|
|
|
|
Ref<MLPPMatrix> x_deriv = dx(input);
|
|
Ref<MLPPMatrix> y_deriv = dy(input);
|
|
|
|
Ref<MLPPMatrix> gaussian_filter = gaussian_filter_2d(GAUSSIAN_SIZE, SIGMA); // Sigma of 1, size of 3.
|
|
Ref<MLPPMatrix> xx_deriv = convolve_2d(x_deriv->hadamard_productn(x_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
Ref<MLPPMatrix> yy_deriv = convolve_2d(y_deriv->hadamard_productn(y_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
Ref<MLPPMatrix> xy_deriv = convolve_2d(x_deriv->hadamard_productn(y_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
|
|
Size2i ds = xx_deriv->size();
|
|
|
|
Ref<MLPPTensor3> M;
|
|
M.instance();
|
|
M->resize(Size3i(ds.x, ds.y, 3));
|
|
|
|
M->z_slice_set_mlpp_matrix(0, xx_deriv);
|
|
M->z_slice_set_mlpp_matrix(1, yy_deriv);
|
|
M->z_slice_set_mlpp_matrix(2, xy_deriv);
|
|
|
|
return M;
|
|
}
|
|
|
|
Vector<Ref<MLPPMatrix>> MLPPConvolutions::compute_mv(const Ref<MLPPMatrix> &input) {
|
|
Size2i input_size = input->size();
|
|
|
|
real_t const SIGMA = 1;
|
|
real_t const GAUSSIAN_SIZE = 3;
|
|
|
|
real_t const GAUSSIAN_PADDING = ((input_size.y - 1) + GAUSSIAN_SIZE - input_size.y) / 2; // Convs must be same.
|
|
|
|
Ref<MLPPMatrix> x_deriv = dx(input);
|
|
Ref<MLPPMatrix> y_deriv = dy(input);
|
|
|
|
Ref<MLPPMatrix> gaussian_filter = gaussian_filter_2d(GAUSSIAN_SIZE, SIGMA); // Sigma of 1, size of 3.
|
|
Ref<MLPPMatrix> xx_deriv = convolve_2d(x_deriv->hadamard_productn(x_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
Ref<MLPPMatrix> yy_deriv = convolve_2d(y_deriv->hadamard_productn(y_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
Ref<MLPPMatrix> xy_deriv = convolve_2d(x_deriv->hadamard_productn(y_deriv), gaussian_filter, 1, GAUSSIAN_PADDING);
|
|
|
|
Vector<Ref<MLPPMatrix>> M;
|
|
M.resize(3);
|
|
|
|
M.set(0, xx_deriv);
|
|
M.set(1, yy_deriv);
|
|
M.set(2, xy_deriv);
|
|
|
|
return M;
|
|
}
|
|
|
|
Vector<Vector<CharType>> MLPPConvolutions::harris_corner_detection(const Ref<MLPPMatrix> &input) {
|
|
real_t const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well.
|
|
|
|
Vector<Ref<MLPPMatrix>> M = compute_mv(input);
|
|
|
|
Ref<MLPPMatrix> M0 = M[0];
|
|
Ref<MLPPMatrix> M1 = M[1];
|
|
Ref<MLPPMatrix> M2 = M[2];
|
|
|
|
Ref<MLPPMatrix> det = M0->hadamard_productn(M1)->subn(M2->hadamard_productn(M2));
|
|
Ref<MLPPMatrix> trace = M0->addn(M1);
|
|
|
|
// The reason this is not a scalar is because xx_deriv, xy_deriv, yx_deriv, and yy_deriv are not scalars.
|
|
Ref<MLPPMatrix> r = det->subn(trace->hadamard_productn(trace)->scalar_multiplyn(k));
|
|
Size2i r_size = r->size();
|
|
|
|
Vector<Vector<CharType>> image_types;
|
|
image_types.resize(r_size.y);
|
|
//alg.printMatrix(r);
|
|
|
|
for (int i = 0; i < r_size.y; i++) {
|
|
image_types.write[i].resize(r_size.x);
|
|
|
|
for (int j = 0; j < r_size.x; j++) {
|
|
real_t e = r->element_get(i, j);
|
|
|
|
if (e > 0) {
|
|
image_types.write[i].write[j] = 'C';
|
|
} else if (e < 0) {
|
|
image_types.write[i].write[j] = 'E';
|
|
} else {
|
|
image_types.write[i].write[j] = 'N';
|
|
}
|
|
}
|
|
}
|
|
|
|
return image_types;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_prewitt_horizontal() const {
|
|
return _prewitt_horizontal;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_prewitt_vertical() const {
|
|
return _prewitt_vertical;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_sobel_horizontal() const {
|
|
return _sobel_horizontal;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_sobel_vertical() const {
|
|
return _sobel_vertical;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_scharr_horizontal() const {
|
|
return _scharr_horizontal;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_scharr_vertical() const {
|
|
return _scharr_vertical;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_roberts_horizontal() const {
|
|
return _roberts_horizontal;
|
|
}
|
|
Ref<MLPPMatrix> MLPPConvolutions::get_roberts_vertical() const {
|
|
return _roberts_vertical;
|
|
}
|
|
|
|
MLPPConvolutions::MLPPConvolutions() {
|
|
const real_t prewitt_horizontal_arr[]{
|
|
1, 1, 1, //
|
|
0, 0, 0, //
|
|
-1, -1, -1, //
|
|
};
|
|
const real_t prewitt_vertical_arr[] = {
|
|
1, 0, -1, //
|
|
1, 0, -1, //
|
|
1, 0, -1 //
|
|
};
|
|
const real_t sobel_horizontal_arr[] = {
|
|
1, 2, 1, //
|
|
0, 0, 0, //
|
|
-1, -2, -1 //
|
|
};
|
|
const real_t sobel_vertical_arr[] = {
|
|
-1, 0, 1, //
|
|
-2, 0, 2, //
|
|
-1, 0, 1 //
|
|
};
|
|
const real_t scharr_horizontal_arr[] = {
|
|
3, 10, 3, //
|
|
0, 0, 0, //
|
|
-3, -10, -3 //
|
|
};
|
|
const real_t scharr_vertical_arr[] = {
|
|
3, 0, -3, //
|
|
10, 0, -10, //
|
|
3, 0, -3 //
|
|
};
|
|
const real_t roberts_horizontal_arr[] = {
|
|
0, 1, //
|
|
-1, 0 //
|
|
};
|
|
const real_t roberts_vertical_arr[] = {
|
|
1, 0, //
|
|
0, -1 //
|
|
};
|
|
|
|
_prewitt_horizontal = Ref<MLPPMatrix>(memnew(MLPPMatrix(prewitt_horizontal_arr, 3, 3)));
|
|
_prewitt_vertical = Ref<MLPPMatrix>(memnew(MLPPMatrix(prewitt_vertical_arr, 3, 3)));
|
|
_sobel_horizontal = Ref<MLPPMatrix>(memnew(MLPPMatrix(sobel_horizontal_arr, 3, 3)));
|
|
_sobel_vertical = Ref<MLPPMatrix>(memnew(MLPPMatrix(sobel_vertical_arr, 3, 3)));
|
|
_scharr_horizontal = Ref<MLPPMatrix>(memnew(MLPPMatrix(scharr_horizontal_arr, 3, 3)));
|
|
_scharr_vertical = Ref<MLPPMatrix>(memnew(MLPPMatrix(scharr_vertical_arr, 3, 3)));
|
|
_roberts_horizontal = Ref<MLPPMatrix>(memnew(MLPPMatrix(roberts_horizontal_arr, 2, 2)));
|
|
_roberts_vertical = Ref<MLPPMatrix>(memnew(MLPPMatrix(roberts_vertical_arr, 2, 2)));
|
|
}
|
|
|
|
void MLPPConvolutions::_bind_methods() {
|
|
}
|