pmlpp/auto_encoder/auto_encoder.cpp

399 lines
12 KiB
C++

/*************************************************************************/
/* auto_encoder.cpp */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
/* Copyright (c) 2023-present Péter Magyar. */
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "auto_encoder.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../utilities/utilities.h"
#ifdef USING_SFW
#include "sfw.h"
#else
#include "core/log/logger.h"
#endif
#include <random>
//UDPATE
Ref<MLPPMatrix> MLPPAutoEncoder::get_input_set() {
return _input_set;
}
void MLPPAutoEncoder::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
_initialized = false;
}
int MLPPAutoEncoder::get_n_hidden() {
return _n_hidden;
}
void MLPPAutoEncoder::set_n_hidden(const int val) {
_n_hidden = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPAutoEncoder::model_set_test(const Ref<MLPPMatrix> &X) {
ERR_FAIL_COND_V(!_initialized, Ref<MLPPMatrix>());
return evaluatem(X);
}
Ref<MLPPVector> MLPPAutoEncoder::model_test(const Ref<MLPPVector> &x) {
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
return evaluatev(x);
}
void MLPPAutoEncoder::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _input_set);
// Calculating the errors
Ref<MLPPMatrix> error = _y_hat->subn(_input_set);
// Calculating the weight/bias gradients for layer 2
Ref<MLPPMatrix> D2_1 = _a2->transposen()->multn(error);
// weights and bias updation for layer 2
_weights2->sub(D2_1->scalar_multiplyn(learning_rate / _n));
// Calculating the bias gradients for layer 2
_bias2->subtract_matrix_rows(error->scalar_multiplyn(learning_rate));
//Calculating the weight/bias for layer 1
Ref<MLPPMatrix> D1_1 = error->multn(_weights2->transposen());
Ref<MLPPMatrix> D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(_z2));
Ref<MLPPMatrix> D1_3 = _input_set->transposen()->multn(D1_2);
// weight an bias updation for layer 1
_weights1->sub(D1_3->scalar_multiplyn(learning_rate / _n));
_bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate / _n));
forward_pass();
// UI PORTION
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _input_set));
PLOG_MSG("Layer 1:");
MLPPUtilities::print_ui_mb(_weights1, _bias1);
PLOG_MSG("Layer 2:");
MLPPUtilities::print_ui_mb(_weights2, _bias2);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPAutoEncoder::sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
real_t cost_prev = 0;
int epoch = 1;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPMatrix> input_set_mat_tmp;
input_set_mat_tmp.instance();
input_set_mat_tmp->resize(Size2i(_input_set->size().x, 1));
Ref<MLPPMatrix> y_hat_mat_tmp;
y_hat_mat_tmp.instance();
y_hat_mat_tmp->resize(Size2i(_bias2->size(), 1));
while (true) {
int output_index = distribution(generator);
_input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp);
input_set_mat_tmp->row_set_mlpp_vector(0, input_set_row_tmp);
Ref<MLPPVector> y_hat = evaluatev(input_set_row_tmp);
y_hat_mat_tmp->row_set_mlpp_vector(0, y_hat);
PropagateVResult prop_res = propagatev(input_set_row_tmp);
cost_prev = cost(y_hat_mat_tmp, input_set_mat_tmp);
Ref<MLPPVector> error = y_hat->subn(input_set_row_tmp);
// Weight updation for layer 2
Ref<MLPPMatrix> D2_1 = error->outer_product(prop_res.a2);
_weights2->sub(D2_1->transposen()->scalar_multiplyn(learning_rate));
// Bias updation for layer 2
_bias2->sub(error->scalar_multiplyn(learning_rate));
// Weight updation for layer 1
Ref<MLPPVector> D1_1 = _weights2->mult_vec(error);
Ref<MLPPVector> D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivv(prop_res.z2));
Ref<MLPPMatrix> D1_3 = input_set_row_tmp->outer_product(D1_2);
_weights1->sub(D1_3->scalar_multiplyn(learning_rate));
// Bias updation for layer 1
_bias1->sub(D1_2->scalar_multiplyn(learning_rate));
y_hat = evaluatev(input_set_row_tmp);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_mat_tmp, input_set_mat_tmp));
PLOG_MSG("Layer 1:");
MLPPUtilities::print_ui_mb(_weights1, _bias1);
PLOG_MSG("Layer 2:");
MLPPUtilities::print_ui_mb(_weights2, _bias2);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPAutoEncoder::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
Vector<Ref<MLPPMatrix>> batches = MLPPUtilities::create_mini_batchesm(_input_set, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_batch = batches[i];
Ref<MLPPMatrix> y_hat = evaluatem(current_batch);
PropagateMResult prop_res = propagatem(current_batch);
cost_prev = cost(y_hat, current_batch);
// Calculating the errors
Ref<MLPPMatrix> error = y_hat->subn(current_batch);
// Calculating the weight/bias gradients for layer 2
Ref<MLPPMatrix> D2_1 = prop_res.a2->transposen()->multn(error);
// weights and bias updation for layer 2
_weights2->sub(D2_1->scalar_multiplyn(learning_rate / current_batch->size().y));
// Bias Updation for layer 2
_bias2->sub(error->scalar_multiplyn(learning_rate));
//Calculating the weight/bias for layer 1
Ref<MLPPMatrix> D1_1 = _weights2->transposen()->multn(error);
Ref<MLPPMatrix> D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(prop_res.z2));
Ref<MLPPMatrix> D1_3 = current_batch->transposen()->multn(D1_2);
// weight an bias updation for layer 1
_weights2->sub(D1_3->scalar_multiplyn(learning_rate / current_batch->size().x));
_bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate / current_batch->size().x));
y_hat = evaluatem(current_batch);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_batch));
PLOG_MSG("Layer 1:");
MLPPUtilities::print_ui_mb(_weights1, _bias1);
PLOG_MSG("Layer 2:");
MLPPUtilities::print_ui_mb(_weights2, _bias2);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
real_t MLPPAutoEncoder::score() {
ERR_FAIL_COND_V(!_initialized, 0);
MLPPUtilities util;
return util.performance_mat(_y_hat, _input_set);
}
void MLPPAutoEncoder::save(const String &file_name) {
ERR_FAIL_COND(!_initialized);
//MLPPUtilities util;
//util.saveParameters(fileName, _weights1, _bias1, false, 1);
//util.saveParameters(fileName, _weights2, _bias2, true, 2);
}
MLPPAutoEncoder::MLPPAutoEncoder(const Ref<MLPPMatrix> &p_input_set, int p_n_hidden) {
_input_set = p_input_set;
_n_hidden = p_n_hidden;
_n = _input_set->size().y;
_k = _input_set->size().x;
_y_hat.instance();
_y_hat->resize(_input_set->size());
MLPPUtilities utilities;
_weights1.instance();
_weights1->resize(Size2i(_n_hidden, _k));
utilities.weight_initializationm(_weights1);
_weights2.instance();
_weights2->resize(Size2i(_k, _n_hidden));
utilities.weight_initializationm(_weights2);
_bias1.instance();
_bias1->resize(_n_hidden);
utilities.bias_initializationv(_bias1);
_bias2.instance();
_bias2->resize(_k);
utilities.bias_initializationv(_bias2);
_initialized = true;
}
MLPPAutoEncoder::MLPPAutoEncoder() {
_initialized = false;
}
MLPPAutoEncoder::~MLPPAutoEncoder() {
}
real_t MLPPAutoEncoder::cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y) {
MLPPCost mlpp_cost;
return mlpp_cost.msem(y_hat, y);
}
Ref<MLPPVector> MLPPAutoEncoder::evaluatev(const Ref<MLPPVector> &x) {
MLPPActivation avn;
Ref<MLPPVector> z2 = _weights1->transposen()->mult_vec(x)->addn(_bias1);
Ref<MLPPVector> a2 = avn.sigmoid_normv(z2);
return _weights2->transposen()->mult_vec(a2)->addn(_bias2);
}
MLPPAutoEncoder::PropagateVResult MLPPAutoEncoder::propagatev(const Ref<MLPPVector> &x) {
MLPPActivation avn;
PropagateVResult res;
res.z2 = _weights1->transposen()->mult_vec(x)->addn(_bias1);
res.a2 = avn.sigmoid_normv(res.z2);
return res;
}
Ref<MLPPMatrix> MLPPAutoEncoder::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPActivation avn;
Ref<MLPPMatrix> z2 = X->multn(_weights1)->add_vecn(_bias1);
Ref<MLPPMatrix> a2 = avn.sigmoid_normm(z2);
return a2->multn(_weights2)->add_vecn(_bias2);
}
MLPPAutoEncoder::PropagateMResult MLPPAutoEncoder::propagatem(const Ref<MLPPMatrix> &X) {
MLPPActivation avn;
PropagateMResult res;
res.z2 = X->multn(_weights1)->add_vecn(_bias1);
res.a2 = avn.sigmoid_normm(res.z2);
return res;
}
void MLPPAutoEncoder::forward_pass() {
MLPPActivation avn;
_z2 = _input_set->multn(_weights1)->add_vecn(_bias1);
_a2 = avn.sigmoid_normm(_z2);
_y_hat = _a2->multn(_weights2)->add_vecn(_bias2);
}
void MLPPAutoEncoder::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPAutoEncoder::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPAutoEncoder::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPAutoEncoder::get_n_hidden);
ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPAutoEncoder::set_n_hidden);
ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden");
/*
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPAutoEncoder::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPAutoEncoder::model_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::gradient_descent, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::sgd, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPAutoEncoder::mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPAutoEncoder::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPAutoEncoder::save);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPAutoEncoder::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPAutoEncoder::initialize);
*/
}